
DevOps
Resource
Guide

1 �

The IT Revolution

DevOps
Guide
Selected Resources to
Start Your Journey

DevOps
Resource
Guide

2 �

Contents

3	 Introduction

4
�Starting
with
DevOps�

5 	 Why Do DevOps?

11 	 Where It All Started:
10+ Deploys per Day:
Dev and Ops
Cooperation at Flickr

12 	 How Does DevOps
“Work”?

16 	 Business Objectives
Specific to Scaling DevOps

21 	 Win-Win Relationship
between Dev and Ops

22
�The First Way:
System Flow
from Left to Right�

23 	 Bill Learns about
Bottlenecks

29 	 Peer-Reviewed Change
Approval Process

30	 Continuous Delivery:
Reliable Software
Releases through Build,
Test, and Deployment
Automation

35	 The Goal: A Process of
Ongoing Improvement

36 	 DevOps & Lean In
Legacy Environments

37
�The Second Way:
Amplify
Feedback Loops�

38 	 Proactive Monitoring

39 	 If You’re Going for
Continuous Delivery
without Making Testing
Your #1, You’re Doing
It Wrong

42	 Conduct Blameless
Postmortems

47 	 Why Test Data
Management Is Broken

52	 On the Care and Feeding
of Feedback Cycles

53
�The Third Way:
Culture
Experimentation
and Mastery�

54 	 From Agile to DevOps
at Microsoft Developer
Division

59 	 Version Control for
All Production Artifacts

60	 The High-Velocity Edge:
How Market Leaders
Leverage Operational
Excellence to Beat
the Competition

62 	 Continuous Discussions
(#c9d9)

64	 Toyota Kata: Managing
People for Improvement,
Adaptiveness, and
Superior Results

65
�Growth
and
Change�

66 	 How DevOps Can Fix
Federal Government

67 	 The Secret to
Scaling DevOps

71 	 Amazon’s Approach
to Growth

75 	 High-Trust
Organizational Culture

76 	 Learnings: Practices
Where We Gauge
Our Excellence

78	 The Five Dysfunctions
of a Team:
A Leadership Fable

79 	 Next 80 	About IT Revolution

81 	 The Phoenix Project

82 	 DevOps Enterprise
Summit and
The DevOps Cookbook

83 	 Acknowledgments Sponsors

http://itrevolution.com/links/newrelic/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/xebialabs/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/delphix/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/microsoft/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/electric-cloud-c9d9/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/rallydev/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

3 �

The most commonly asked question that we get at
IT Revolution is “How do I get started with DevOps?”
Rather than try to answer all of these questions ourselves, we decided
to gather the best resources from some of the best thinkers in the field.

Our goal for The IT Revolution DevOps Guide: Selected Resources to
Start Your Journey is to present the most helpful materials for practitioners
to learn and accelerate their own DevOps journey.

We reached out to several practitioners that we admire for their best ideas
on how to get started. In addition, we assembled some of the best material
from the vendor community and have highlighted those works as well.
We combined these with excerpts from The Phoenix Project, the upcoming
DevOps Cookbook, 2014 State of DevOps Survey of Practice, and 2014
DevOps Enterprise Summit. You’ll find a collection of essays, book excerpts,
videos, survey results, book reviews, and more.

We hope you enjoy this collection and find it useful, regardless of where
you are on your DevOps journey. 

— GENE KIM AND THE IT RE VOLUTION TE AM

Introduction

DevOps
Resource
Guide

4 �

Starting
with
DevOps n n n n n n n n n n n

DevOps
Resource
Guide

5 �

Starting
with
DevOps

Why Do DevOps?
The competitive advantage this capability creates is enormous,

enabling faster feature time to market, increased customer

satisfaction, market share, and employee productivity and

happiness, as well as allowing organizations to win in the

marketplace. Why? Because technology has become

the dominant value creation process and an increasingly

important (and often the primary) means of customer

acquisition within most organizations.

In contrast, organizations that require weeks or months

to deploy software are at a significant disadvantage in

the marketplace.

DevOps
Resource
Guide

6 �

Starting
with
DevOps

COMPANY DEPLOY
FREQUENCY

DEPLOY
LEAD TIME RELIABILITY CUSTOMER

RESPONSIVENESS

Amazon 23,000/day minutes high high

Google 5,500/day minutes high high

Netflix 500/day minutes high high

Facebook 1/day minutes high high

Twitter 3/week minutes high high

Typical enterprise once every 9 months months or quarters low/medium low/medium

One of the hallmarks of high performers in any field

is that they always “accelerate from the rest of the herd.”

In other words, the best always get better.

This constant and relentless improvement in performance

is happening in the DevOps space, too. In 2009, ten deploys

per day was considered fast. Now that is considered merely

average. In 2012, Amazon went on record stating that they

were doing, on average, 23,000 deploys per day.

DevOps
Resource
Guide

7 �

Business Value of Adopting DevOps Principles

In the 2013 Puppet Labs “State of DevOps Report,”

we were able to benchmark 4,039 IT organizations

with the goal of better understanding the health and habits

of organizations at all stages of DevOps adoption.

The first surprise was how much the high-performing

organizations using DevOps practices were outperforming

their non-high-performing peers in agility metrics:

■	 30× more frequent code deployments

■	 8,000× faster code deployment lead time

And reliability metrics:

■	 2× the change success rate

■	 12× faster MTTR

In other words, they were more Agile. They were deploying

code thirty times more frequently, and the time required to go

from “code committed” to “successfully running in production”

was eight thousand times faster. High performers had lead

times measured in minutes or hours, while lower performers

had lead times measured in weeks, months, or even quarters.

Not only were the organizations doing more work, but they

had far better outcomes: when the high performers deployed

changes and code, they were twice as likely to be completed

successfully (i.e., without causing a production outage or service

impairment), and when the change failed and resulted in an

incident, the time required to resolve the incident was twelve

times faster.

This study was especially exciting because it showed empirically

that the core, chronic conflict can be broken: high performers

are deploying features more quickly while providing world-class

levels of reliability, stability, and security, enabling them to out-

experiment their competitors in the marketplace. An even more

astonishing fact: delivering these high levels of reliability actually

requires that changes be made frequently!

In the 2014 study, we also found that not only did these high

performers have better IT performance, they also had signifi-

cantly better organizational performance as well: they were

two times more likely to exceed profitability, market share, and

productivity goals, and there are hints that they have significantly

better performance in the capital markets, as well.

Starting
with
DevOps

DevOps
Resource
Guide

8 �

What It Feels Like to Live in a DevOps World

Imagine 	 living in a DevOps world, where

	 product owners, Development, QA,

IT Operations, and InfoSec work together relentlessly to help

each other and the overall organization win. They are enabling

fast flow of planned work into production (e.g., performing

tens, hundreds, or even thousands of code deploys per day),

while preserving world-class stability, reliability, availability,

and security.

Instead of the upstream Development groups causing chaos for

those in the downstream work centers (e.g., QA, IT Operations,

and InfoSec), Development is spending twenty percent of its

time helping ensure that work flows smoothly through the entire

value stream, speeding up automated tests, improving deploy-

ment infrastructure, and ensuring that all applications create

useful production telemetry.

Why? Because everyone needs fast feedback loops to prevent

problematic code from going into production and to enable code

to quickly be deployed so that any production problems are

quickly detected and corrected.

Everyone in the value stream shares a culture that not only

values people’s time and contributions but also relentlessly

injects pressure into the system of work to enable organizational

learning and improvement. Everyone dedicates time to

putting those lessons into practice and paying down technical

debt. Everyone values nonfunctional requirements (e.g., quality,

scalability, manageability, security, operability) as much as

features. Why? Because nonfunctional requirements are just

as important in achieving business objectives, too.

We have a high-trust, collaborative culture where everyone is

responsible for the quality of their work. Instead of approval

and compliance processes, the hallmark of a low-trust, command-

and-control management culture, we rely on peer review to

ensure that everyone has confidence in the quality of their code.

Furthermore, there is a hypothesis-driven culture, requiring

everyone to be a scientist, taking no assumptions for granted

and doing nothing without measuring. Why? Because we

know that our time is valuable. We don’t spend years building

features that our customers don’t actually want, deploying

code that doesn’t work, or fixing something that isn’t actually

the problem. All these factors contribute to our ability to

release exciting features to the marketplace that delight our

customers and help our organization win. Starting
with
DevOps

DevOps
Resource
Guide

9 �

Paradoxically, performing code deployments becomes boring and

routine. Instead of being performed only at night or on weekends,

full of stress and chaos, we are deploying code throughout the

business day, without most people even noticing. And because

code deployments happen in the middle of the afternoon instead

of on weekends, for the first time in decades, IT Operations is

working during normal business hours, like everyone else.

Just how did code deployment become routine? Because devel-

opers are constantly getting fast feedback on their work: when

they write code, automated unit, acceptance, and integration

tests are constantly being run in production-like environments,

giving us continual assurance that the code and environment

will operate as designed and that we are always in a deployable

state. And when the code is deployed, pervasive production

metrics demonstrate to everyone that it is working and the

customer is getting value.

Even our highest-stakes feature releases have become routine.

How? Because at product launch time, the code delivering

the new functionality is already in production. Months prior

to the launch, Development has been deploying code into

production, invisible to the customer, but enabling the feature

to be run and tested by internal staff.

At the culminating moment when the feature goes live, no new

code is pushed into production. Instead, we merely change a

feature toggle or configuration setting. The new feature is slowly

made visible to small segments of customers and automatically

rolled back if something goes wrong.

Only when we have confidence that the feature is working as

designed do we expose it to the next segment of customers,

rolled out in a manner that is controlled, predictable, reversible,

and low stress. We repeat until everyone is using the feature.

By doing this, we not only significantly reduce deployment risk

but also increase the likelihood of achieving the desired business

outcomes, as well. Because we can do deployments quickly,

we can do experiments in production, testing our business

hypotheses for every feature we build. We can iteratively test

and refine our features in production, using feedback from

our customers for months, and maybe even years.

It is no wonder that we are out-experimenting our competition

and winning in the marketplace.

All this is made possible by DevOps, a new way that Development,

Test, and IT Operations work together, along with everyone

else in the IT value stream.
Starting
with
DevOps

DevOps
Resource
Guide

10 �

DevOps Is the Manufacturing Revolution of Our Age

The	 principles behind DevOps work patterns are the

	 same principles that transformed manufacturing.

Instead of optimizing how raw materials are transformed

into finished goods in a manufacturing plant, DevOps shows

how we optimize the IT value stream, converting business

needs into capabilities and services that provide value for

our customers.

During the 1980s, there was a very well-known core, chronic

conflict in manufacturing:

■	 Protect sales commitments

■	 Control manufacturing costs

In order to protect sales commitments, the product sales force

wanted lots of inventory on hand, so that customers could

always get products when they wanted them. However, in order

to reduce costs, plant managers wanted to reduce inventory

levels and work in process (WIP).

Because one can’t simultaneously increase and decrease the

inventory levels at the plant, sales managers and plant managers

were locked in a chronic conflict.

They were able to break the conflict by adopting Lean principles,

such as reducing batch sizes, reducing work in process, and

shortening and amplifying feedback loops. This resulted

in dramatic increases in plant productivity, product quality,

and customer satisfaction.

In the 1980s, average order lead times were six weeks, with

less than 70 percent of orders being shipped on time. By 2005,

average product lead times had dropped to less than three

weeks, with more than 95 percent of orders being shipped on

time. Organizations that were not able to replicate these perfor-

mance breakthroughs lost market share, if they didn’t go out

of business entirely 

© 2015 IT Revolution | �itrevolution.com

The principles behind DevOps work
patterns are the same principles that
transformed manufacturing. … DevOps
shows how we optimize the IT value
stream, converting business needs into
capabilities and services that provide
value for our customers.

Starting
with
DevOps

http://itrevolution.com/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

11 �

Video

Starting
with
DevOps

Where It All Started:
10+ Deploys per Day: Dev and Ops Cooperation at Flickr
presentation by John Allspaw and Paul Hammond at Velocity 2009

This talk is widely credited for showing the world what DevOps could achieve,

showing how one of the largest Internet sites was routinely deploying

features into production at a rate scarcely imaginable for typical IT organizations

who were doing quarterly or annual updates.

http://itrevolution.com/links/10plusdeploys/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

12 �

Essay

How Does DevOps “Work”?
from Navigating DevOps

Like all cultures, DevOps has many variations on the theme.

However, most observers would agree that the following capabili-

ties are common to virtually all DevOps cultures: collaboration,

automation, continuous integration, Continuous Delivery, contin-

uous testing, continuous monitoring, and rapid remediation.

Collaboration

Instead of pointing fingers at each other, development and IT op-

erations work together (no, really). While the disconnect between

these two groups created the impetus for its creation, DevOps

extends far beyond the IT organization, because the need for col-

laboration extends to everyone with a stake in the delivery of

software (not just between Dev and Ops, but all teams, including

test, product management, and executives).

New Relic is a software analytics company that

makes sense of billions of data points about

millions of applications in real time. New Relic’s

comprehensive SaaS-based solution provides

one powerful interface for web and native

mobile applications and consolidates the

performance monitoring data for any chosen

technology in your environment. More than

250,000 users trust New Relic to tap into

the billions of real-time metrics from inside

their production software.

Starting
with
DevOps

http://itrevolution.com/links/newrelic/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

13 �

Successful DevOps requires business, development, QA, and opera-

tions organizations to coordinate and play significant roles at different

phases of the application lifecycle. It may be difficult, even impossible,

to eliminate silos, but collaboration is essential.

Automation

DevOps relies heavily on automation—and that means you need

tools. Tools you build. Tools you buy. Open source tools. Proprietary

tools. And those tools are not just scattered around the lab willy-

nilly: DevOps relies on toolchains to automate large parts of the

end-to-end software development and deployment process.

Caveat: because DevOps tools are so amazingly awesome,

there’s a tendency to see DevOps as just a collection of tools.

While it’s true that DevOps relies on tools, DevOps is much more

than that.

Continuous Integration

You usually find continuous integration in DevOps cultures

because DevOps emerged from Agile culture, and continuous

integration is a fundamental tenet of the Agile approach.

Continuous integration (CI) is a software engineering practice in

which isolated changes are immediately tested and reported on

when they are added to a larger code base. The goal of CI is to

provide rapid feedback so that if a defect is introduced into the

code base, it can be identified and corrected as soon as possible.

The usual rule is for each team member to submit work on a daily

(or more frequent) basis and for a build to be conducted with each

significant change.

The continuous integration principle of Agile development has a

cultural implication for the development group. Forcing develop-

ers to integrate their work with other developers frequently—at

least daily—exposes integration issues and conflicts much earlier

than is the case with waterfall development. However, to achieve

this benefit, developers have to communicate with each other

much more frequently—something that runs counter to the image

of the solitary genius coder working for weeks or months on a

module before she is “ready” to send it out in the world. That seed

of open, frequent communication blooms in DevOps.

Continuous Testing

The testing piece of DevOps is easy to overlook—until you get

burned. As one industry expert puts it, “The cost of quality is the

cost of failure.” While continuous integration and delivery get the

lion’s share of the coverage, continuous testing is quietly finding

its place as an equally critical piece of DevOps.

Continuous testing is not just a QA function. In fact, it starts in

the development environment. The days are over when develop-

ers could simply throw the code over the wall to QA and say, “Have

at it.” In a DevOps environment, everyone is involved in testing.

Starting
with
DevOps

DevOps
Resource
Guide

14 �

The payoff from continuous testing is well worth the effort.

The test function in a DevOps environment helps developers to

balance quality and speed. Using automated tools reduces the cost

of testing and allows test engineers to leverage their time more

effectively. Most importantly, continuous testing shortens test

cycles by allowing integration testing earlier in the process.

Continuous testing also eliminates testing bottlenecks through

virtualized dependent services, and it simplifies the creation of vir-

tualized test environments that can be easily deployed, shared, and

updated as systems change. These capabilities reduce the cost of

provisioning and maintaining test environments, and they shorten

test cycle times by allowing integration testing earlier in life cycle.

Developers make sure that, along with delivering error-free code,

they provide test data sets. They also help test engineers config-

ure the testing environment to be as close to the production envi-

ronment as possible.

On the QA side, the big need is speed. After all, if the QA cycle

takes days and weeks, you’re right back into a long, drawn-out

waterfall kind of schedule. Test engineers meet the challenge of

quick turnaround by not only automating much of the test process

but also redefining test methodologies:

Rather than making test a separate and lengthy sequence in the larger

deployment process, Continuous Delivery practitioners roll out small

upgrades almost constantly, measure their performance, and quickly

roll them back as needed.

Although it may come as a surprise, the operations function has

an important role to play in testing and QA:

Operations has access to production usage and load patterns. These

patterns are essential to the QA team for creating a load test that

properly exercises the application.

Operations can also ensure that monitoring tools are in place and

test environments are properly configured. They can participate in

functional, load, stress, and leak tests and offer analysis based on

their experience with similar applications running in production.

Rather than making test a separate
and lengthy sequence in the larger
deployment process, Continuous Delivery
practitioners roll out small upgrades
almost constantly, measure their
performance, and quickly roll them
back as needed.

Starting
with
DevOps

DevOps
Resource
Guide

15 �

Continuous Monitoring

Given the sheer number of releases, there’s no way to implement

the kind of rigorous pre-release testing that characterizes water-

fall development. Therefore, in a DevOps environment, failures

must be found and fixed in real time. How do you do that? A big

part is continuous monitoring.

According to one pundit, the goals of continuous monitoring are

to quickly determine when a service is unavailable, understand

the underlying causes, and most importantly, apply these learn-

ings to anticipate problems before they occur. In fact, some moni-

toring experts advocate that the definition of a service must

include monitoring—they see it as integral to service delivery.

Like testing, monitoring starts in development. The same tools

that monitor the production environment can be employed in devel-

opment to spot performance problems before they hit production.

Two kinds of monitoring are required for DevOps: server

monitoring and application performance monitoring. Monitoring

discussions quickly get down to tools discussions, because there is

no effective monitoring without the proper tools.

Continuous Delivery

In the words of one commentator, “Continuous Delivery is nothing

but taking this concept of continuous integration to the next step.”

Instead of ending at the door of the development lab, continuous

integration in DevOps extends to the entire release chain, includ-

ing QA and operations. The result is that individual releases are far

less complex and come out much more frequently.

The actual release frequency varies greatly depending on the

company’s legacy and goals. For example, one Fortune 100 com-

pany improved its release cycle from once a year to once a quar-

ter—a release rate that seems glacial compared to the hundreds of

releases an hour achieved by Amazon.

Exactly what gets released varies as well. In some organizations,

QA and operations triage potential releases: many go directly to

users, some go back to development, and a few simply are not

deployed at all. Other companies—Flickr is a notable example—

push everything that comes from developers out to users and

count on real-time monitoring and rapid remediation to minimize

the impact of the rare failure.

© 2015 New Relic, Inc | �newrelic.com/DevOps

Starting
with
DevOps

	 For a list of DevOps tools (and more DevOps-related content), visit New Relic’s DevOps Hub.
Download the entire Navigating DevOps ebook.

http://itrevolution.com/links/newrelic/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/newrelic/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/newrelic-devops/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

16 �

Book Excerpt

Excerpt from
Leading the Transformation:
Applying Agile and
DevOps Principles at Scale

Gary Gruver and Tommy Mouser

IT Revolution, 2015

Business Objectives Specific
to Scaling DevOps

The fundamental Agile principle of releasing frequently tends to get overlooked

or ignored by organizations that approach Agile transformations by scaling

teams. It has been so overlooked by these organizations that new practices called

DevOps and Continuous Delivery (CD) have begun to emerge to address this gap.

In DevOps, the objective is to blur the lines between Development and Operations

so that new capabilities flow easier from Development into Production. On a small

scale, blurring the lines between Development and Operations at the team level

improves the flow. In large organizations, this tends to require more structured

approaches like CD. Applying these concepts at scale is typically the source of the

biggest breakthroughs in improving the efficiency and effectiveness of software

development in large organizations, and it should be a key focus of any large-scale

transformation and is a big part of this book.

In this book we purposefully blur the line between the technical solutions like CD and

the cultural changes associated with DevOps under the concept of applying DevOps

principles at scale, because you really can’t do one without the other. DevOps and CD

are concepts that are gaining a lot of momentum in the industry because they are ad-

dressing the aforementioned hole in the delivery process. That said, since these ideas are

so new, not everyone agrees on their definitions.

Starting
with
DevOps

http://itrevolution.com/books/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

17 �

Book Excerpt

CD tends to cover all the technical approaches for im-

proving code releases and DevOps tends to be focused on

the cultural changes. From our perspective you really can’t

make the technical changes without the cultural shifts.

Therefore, for the proposes of this book we will define

DevOps as processes and approaches for improving the

efficiency of taking newly created code out of develop-

ment and to your customers. This includes all the techni-

cal capabilities like CD and the cultural changes associated

with Development and Operations groups working togeth-

er better.

There are five main objectives that are helpful for execu-

tives to keep in mind when transforming this part of the de-

velopment process so they can track progress and have

a framework for prioritizing the work.

1. Improve the quality and speed of feedback

for developers

Developers believe they have written good code that meets

its objectives and feel they have done a good job until they

get feedback telling them otherwise. If this feedback takes

days or weeks to get to them, it is of limited value to the de-

velopers’ learning. If you approach a developer weeks after

they have written the code and ask them why they wrote it

that way or tell them that it broke these other things, they

are likely to say, “What code?,” “When?,” or “Are you sure it

was me?” If instead the system was able to provide good

feedback to the developer within a few hours or less, they

will more likely think about their coding approach and will

learn from the mistake.

The objective here is to change the feedback process so

that rather than beating up the developer for making mis-

takes they don’t even remember, there is a real-time pro-

cess that helps them improve. Additionally, you want to

move this feedback from simply validating the code to

making sure it will work efficiently in production so you can

get everyone focused on delivering value all the way to the

customer. Therefore, as much as possible you want to ensure

the feedback is coming from testing in an environment that

is as much like production as possible. This helps to start the

cultural transformation across Development and Operations

by aligning them on a common objective.

The Operations team can ensure their concerns are ad-

dressed by starting to add their release criteria to these test

environments. The Development teams then start to learn

about and correct issues that would occur in production be-

cause they are getting this feedback on a daily basis when it

is easy to fix. Executives must ensure that both Development

and Operations make the cultural shift of using the same Starting
with
DevOps

DevOps
Resource
Guide

18 �

Book Excerpt

tools and automation to build, test, and deploy if the trans-

formation is going to be successful.

2. Reduce the time and resources required to go

from functionality complete or release branching

to production

The next objective is reducing, as much as possible, the time

and resources required to go from functionality complete or

release branching to production. For large, traditional orga-

nizations, this can be a very lengthy and labor intensive pro-

cess that doesn’t add any value and makes it impossible to

release code economically and on a more frequent basis. The

work in this phase of the program is focused on finding and

fixing defects to bring the code base up to release quality.

Reducing this time requires automating your entire regres-

sion suite and implementing all-new testing so that it can be

run every day during the development phase to provide rap-

id feedback to the developers. It also requires teaching your

Development organization to add new code without break-

ing existing functionality, such that the main code branch is

always much closer to release quality.

Once you have daily full-regression testing in place, the

time from functionality complete or branch cut to produc-

tion can go down dramatically because the historic effort of

manually running the entire regression suite and finding the

defects after development is complete has been eliminated.

Ideally, for very mature organizations, this step enables you

to keep trunk quality very close to production quality, such

that you can use continuous deployment techniques to

deploy into production with multiple check-ins a day.

This goal of a production-level trunk is pretty lofty for

most traditional organizations, and lots of businesses cus-

tomers would not accept overly frequent releases. Working

towards this goal, though, enables you to support delivery of

the highest-priority features on a regular cadence defined by

the business instead of one defined by the development pro-

cess capabilities. Additionally, if the developers are working

on a development trunk that is very unstable and full of de-

fects, the likely reaction to a test failure is “that’s not my fault,

I’m sure that defect was already there.” On the other hand, if

the trunk is stable and of high quality, they are much more

likely to realize that a new test failure may in fact be the re-

sult of the code they just checked in. With this realization

you will see the Development community begin to take own-

ership for the quality of the code they commit each day.

Starting
with
DevOps

DevOps
Resource
Guide

19 �

Book Excerpt

3. Improve the repeatability of the build,

deploy, and test process

In most large, traditional organizations, the repeatability of

the entire build, test, and deploy process can be a huge

source of inefficiencies. For small organizations with inde-

pendent applications, a few small Scrum teams working

together can easily accomplish this process improvement.

For large organizations that have large groups of engineers

working together on a leveraged code base or lots of differ-

ent applications that need to work together, this is a very

different story. Designing a deployment pipeline for how

you build up and test these systems is important. It needs to

be a structured, repeatable process, or you are going to end

up wasting lots of time and resources chasing issues you

can’t find and/or trying to localize the offending code in a

large, complex system. The objective here is to make sure

you have a well-designed, repeatable process.

4. Develop an automated deployment process

that will enable you to quickly and efficiently find

any deployment or environment issues

Depending on the type of application, the deployment pro-

cess may be as simple as FTPing a file to a printer or as

complex as deploying and debugging code to hundreds or

thousands of servers. If the application requires deploying

to lots of servers, debugging the deployment process can be

as complicated as finding code defects in a large system.

Additionally, it can complicate the process of finding code

issues because the system test failures can be either be code

or deployment related. Therefore, it is important to create a

deployment process that can quickly identify and isolate any

deployment issues before starting system testing to find

code issues.

Starting
with
DevOps

DevOps
Resource
Guide

20 �

Book Excerpt

5. Remove the duplication of work that comes from

supporting multiple branches of similar code

Another important objective at this stage of the transforma-

tion is taking duplication out of the process. The goal is to

have your marginal costs for manufacturing and deploying

software to be almost zero. This starts to break down when

you are working with more than one branch of similar code.

Every time you find a code issue, you need to make sure it is

correctly ported and working on every associated branch. It

breaks down even more when your qualification requires

any manual testing, which is expensive and time-consuming

on these different branches.

There are lots of different reasons you will hear for need-

ing different branches. Some reasons are customer driven.

Other reasons for different branches include the belief that

you need branches at different levels of stability or that you

will have to bring in architectural changes and different

branches make that easier. All these issues have been solved

by organizations that have learned how to develop on one

trunk and have realized the efficiencies of this approach. It

will take time and will be an organizational change manage-

ment challenge, but the duplicate work associated with mul-

tiple branches is a huge inefficiency in most large software

development organizations. Every time you see a branch

that lasts more than a couple of days, you should think of it

as duplicate costs in the system impacting the inherent eco-

nomical benefits of your software. Repeat this phrase until

you become comfortable with it: “Branches are evil; branch-

es are evil; branches are evil.” If you are working in a branch-

heavy organization, this may take some time to address, but

every time you see a branch you should ask why it’s there

and look for process changes that will address the same need

without creating branches.

© 2015 Gary Gruver and Tommy Mouser | �itrevolution.com

Starting
with
DevOps

	 Order a copy of Leading the Transformation. To contact Gary Gruver about consulting,
please visit practicallargescaleagile.com or find him on Twitter at @GRUVERGary

http://itrevolution.com/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/books/leading-the-transformation/
http://itrevolution.com/links/practicallargescaleagile/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/gruvergary/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

21 �

Survey

Win-Win
Relationship
between
Dev and Ops

It’s not Dev versus Ops, it’s Dev plus Ops.

When the outcome
of a Dev and Ops
interaction is win-win,
IT performance wins.

 From “Top 5 Predictors of IT Performance,” 2014 State of DevOps Report | �© 2014 Puppet Labs | �puppetlabs.com

Starting
with
DevOps

http://itrevolution.com/links/puppetlabs/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

22 �

n n n n n n n n n

The First Way:
System Flow from

Left to Right
n n n n n n n n n n n

DevOps
Resource
Guide

23 �

Book Excerpt

Excerpt from
The Phoenix Project: A Novel
About IT, DevOps, and
Helping Your Business Win

Gene Kim, Kevin Behr,
and George Spafford

IT Revolution, 2014

Bill Learns about
Bottlenecks

“I came as fast as I could.” I say.

Erik merely grunts and gestures for me to follow him. Again, we climb the

staircase and stand on the catwalk overlooking the plant floor.

“So tell me what you see,” he says, gesturing toward the plant floor.

I look down, confused, not knowing what he wants to hear. Starting with the

obvious, I say, “Like last time, I see raw materials coming in from the loading docks

on the left. And on the right, I see finished goods leaving the other set of loading

docks.”

Surprisingly, Erik nods approvingly. “Good. And in between?”

I look down at the scene. Part of me feels foolish, afraid of looking like the Karate

Kid being quizzed by Mr. Miyagi. But I asked for this meeting, so I just start talking. “I

see materials and work in process, flowing from left to right—but, obviously, moving

very slowly.”

Erik peers over the catwalk, and says, “Oh, really? Like some sort of river?”

He turns to me, shaking his head with disgust, “What do you think this is, some

sort of poetry reading class? Suddenly, WIP is like water running over smooth stones?

Get serious. How would a plant manager answer the question? From where to where

does the work go, and why?” The
First
Way

http://itrevolution.com/links/thephoenixproject/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

24 �

Book Excerpt

Trying again, I say, “Okay, okay. WIP goes from work

center to work center, as dictated by the bill of materials

and routings. And all that is in the job order, which was

released at that desk over there.”

“That’s better,” Erik says. “And can you find the work

centers where the plant constraints are?”

I know that Erik had told me on that first odd trip to

this plant.

“The heat treat ovens and paint curing booths,” I say

suddenly. “There,” I say, after scanning the plant floor and

finally spotting a set of large machines by the far wall.

“And there,” I say, pointing at the large rooms with signs

saying, “Paint Booth #30-a” and “Paint Booth #30-b.”

“Good. Understanding the flow of work is key to achiev-

ing the First Way,” Erik says, nodding. More sternly, he

asks, “So now, tell me again which work centers you’ve

determined to be the constraints in your organization?”

I smile, answering easily, “Brent. We talked about that

before.” He scoffs, turning back to look at the plant floor.

“What?” I nearly shout. “How can it not be Brent? You

even congratulated me when I told you it was Brent a

couple of weeks ago!”

“Suddenly Brent is a robotic heat treat oven? You’re

telling me your equivalent of that paint curing booth down

there is Brent?” he says with mock disbelief. “You know,

that might be the dumbest thing I’ve ever heard.”

He continues, “So, where would that leave your two

managers, Chester and Penelope? Let me guess. Maybe

they’re equivalent to that drill press station and that

stamping machine over there? Or maybe it’s that metal

grinder?”

Erik looks sternly at me, “Get serious. I asked you what

work centers are your constraints. Think.”

“What do you think this is, some sort
of poetry reading class? Suddenly,
WIP is like water running over smooth
stones? Get serious. How would a
plant manager answer the question?
From where to where does the
work go, and why?”

The
First
Way

DevOps
Resource
Guide

25 �

Book Excerpt

Completely confused, I look back down at the plant

floor.

I know that part of the answer is Brent. But when I

blurt it out so confidently, Erik all but smacks me on the

head. Again.

Erik seems aggravated that I named an actual person,

suggesting that Brent was a piece of equipment.

I look again at the heat treat oven. And then I see them.

There are two people wearing coveralls, hard hats, and

goggles. One is in front of a computer screen, punching in

something, while the other is inspecting a pile of parts on

a loading pallet, scanning something with his handheld

computer.

“Oh,” I say, thinking out loud. “The heat treat oven is a

work center, which has workers associated with it. You

asked what work centers are our constraints, and I told

you that it was Brent, which can’t be right, because Brent

isn’t a work center.

“Brent is a worker, not a work center,” I say again. “And

I’m betting that Brent is probably a worker supporting

way too many work centers. Which is why he’s a con-

straint.”

“Now we’re getting somewhere!” Erik says, smiling.

Gesturing broadly at the plant floor below, he says,

“Imagine if twenty-five percent of all the work centers

down there could only be operated by one person named

Brent. What would happen to the flow of work?”

I close my eyes to think.

“Work wouldn’t complete on time, because Brent can

only be at one work center at a time,” I say. Enthusiastically,

I continue, “That’s exactly what’s happening with us. I

know that for a bunch of our planned changes, work can’t

even start if Brent isn’t on hand. When that happens,

we’ll escalate to Brent, telling him to drop whatever he’s

doing, so some other work center can get going. We’ll be

lucky if he can stay there long enough for the change to

be completely implemented before he’s interrupted by

someone else.”

“Exactly!” he says.

I’m slightly dismayed at the warm feeling of approval

that I feel in response.

“Obviously,” he continues, “every work center is made

up of four things: the machine, the man, the method, and

the measures. Suppose for the machine, we select the

heat treat oven. The men are the two people required to The
First
Way

DevOps
Resource
Guide

26 �

Book Excerpt

execute the predefined steps, and we obviously will need

measures based on the outcomes of executing the steps

in the method.”

I frown. These factory terms are vaguely familiar from

my MBA years. But I never thought they’d be relevant in

the IT domain.

Looking for some way to write this down, I realize I left

my clipboard in my car. I pat my pockets and find a small

crumpled index card in my back pocket.

I hurriedly write down, “Work center: machine, man,

method, measure.”

Erik continues, “Of course, on this plant floor, you don’t

have one quarter of the work centers dependent upon

one person. That would be absurd. Unfortunately for you,

you do. That’s why when Brent takes a vacation, all sorts

of work will just grind to a halt, because only Brent knows

how to complete certain steps—steps that probably only

Brent even knew existed, right?”

I nod, unable to resist groaning. “You’re right. I’ve heard

my managers complain that if Brent were hit by the pro-

verbial bus, we’d be completely up the creek. No one

knows what’s in Brent’s head. Which is one of the reasons

I’ve created the level 3 escalation pool.”

I quickly explain what I did to prevent escalations to

Brent during outages to keep him from being interrupted

by unplanned work and how I’ve attempted to do the

same thing for planned changes.

“Good,” he says. “You’re standardizing Brent’s work so

that other people can execute it. And because you’re fi-

nally getting those steps documented, you’re able to

enforce some level of consistency and quality, as well.

You’re not only reducing the number of work centers

where Brent is required, you’re generating documenta-

tion that will enable you to automate some of them.”

He continues, “Incidentally, until you do this, no matter

how many more Brents you hire, Brent will always remain

your constraint. Anyone you hire will just end up standing

around.”

I nod in understanding. This is exactly as Wes described

it. Even though he got the additional headcount to hire

more Brents, we never were able to actually increase our

throughput.

I feel a sudden sense of exhilaration as the pieces fall

into place in my head. He’s confirming some of my deeply

held intuitions and providing an underpinning theory for

why I believe them. The
First
Way

DevOps
Resource
Guide

27 �

Book Excerpt

My elation is short-lived. He looks me over disapprov-

ingly, “You’re asking about how to lift the project freeze.

Your problem is that you keep confusing two things. Until

you can separate them in your head, you’ll just walk

around in circles.”

He starts walking and I hurry after him. Soon, we’re

standing over the middle of the plant floor.

“You see that work center over there, with the yellow

blinking light?” he asks, pointing.

When I nod, he says, “Tell me what you see.”

Wondering what it would take to have a normal con-

versation with him, I resume my dumb trainee role. “Some

piece of machinery is apparently down—that’s what I’m

guessing the blinking light indicates. There are five peo-

ple huddled off to the side, including what looks like two

managers. They all look concerned. There are three more

people crouched down, looking into what I’m guessing

is the machine inspection panel. They have flashlights

and—yeah—they’re also holding screwdrivers—definitely

a machine down...”

“Good guess,” he says. “That’s probably a computerized

grinder that is out of commission, and the maintenance

team is working on getting it back online. What would

happen if every piece of equipment down there needs

Brent to fix it?”

I laugh. “Every outage escalated immediately to Brent.”

“Yes.” He continues, “Let’s start with your first ques-

tion. Which projects are safe to release when the project

freeze is lifted? Knowing how work flows through certain

work centers and how some work centers require Brent

and some do not, what do you think the answer is?”

I slowly repeat what Erik just recited, trying to piece

together the answer.

“I got it,” I say, smiling. “The candidate projects which

are safe to release are those that don’t require Brent.”

I smile even wider when he says, “Bingo. Pretty simple,

yes?”

I feel a sudden sense of exhilaration as
the pieces fall into place in my head.
He’s confirming some of my deeply held
intuitions and providing an underpinning
theory for why I believe them.

The
First
Way

DevOps
Resource
Guide

28 �

Book Excerpt

My smile disappears as I think through the implications.

“Wait, how do I know which projects don’t require Brent?

We never think we actually need Brent until we’re half-

way through the work!”

I immediately regret asking the question as Erik glares

at me. “I’m supposed to give you the answer to everything

that you’re too disorganized to be able to figure out for

yourself?”

“Sorry. I’ll figure it out,” I say quickly. “You know, I’ll

be so relieved when we finally know all the work that

actually requires Brent.”

“Damn right,” he says. “What you’re building is the bill

of materials for all the work that you do in IT Operations.

But instead of a list of parts and subassemblies, like

moldings, screws, and casters, you’re cataloging all the

prerequisites of what you need before you can complete

the work—like laptop model numbers, specifications of

user information, the software and licenses needed,

their configurations, version information, the security

and capacity and continuity requirements, yada yada...”

He interrupts himself, saying, “Well, to be more accu-

rate, you’re actually building a bill of resources. That’s the

bill of materials along with the list of the required work

centers and the routing. Once you have that, along with

the work orders and your resources, you’ll finally be able

to get a handle on what your capacity and demand is. This

is what will enable you to finally know whether you can

accept new work and then actually be able to schedule

the work.”

Amazing. I think I almost get it.

© 2014 Gene Kim, Kevin Behr & George Spafford | �itrevolution.com

The
First
Way

	 Order a copy of The Phoenix Project: A Novel About IT, DevOps, and Helping Your Business Win.
For bulk orders, please e-mail orders@itrevolution.net.

http://itrevolution.com/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/thephoenixproject/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
mailto:orders%40itrevolution.net?subject=

DevOps
Resource
Guide

29 �

Survey

We found that when external approval (e.g., change
approval boards) was required in order to
deploy to production, IT performance decreased. But
when the technical team held
itself accountable for the quality
of its code through peer review,
performance increased.
Surprisingly, the use of external change approval processes
had no impact on restore times and had only a negligible
effect on reducing failed changes. In other words, external
change approval boards had a big negative impact on
throughput, with negligible impact on stability. 

 From “Top 5 Predictors of IT Performance,” 2014 State of DevOps Report | �© 2014 Puppet Labs | �puppetlabs.com

Peer-Reviewed
Change
Approval
Process

The
First
Way

http://itrevolution.com/links/puppetlabs/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

30 �

Book Review

In the IT value stream, success is
all about the left-to-right flow of
work from Development into IT
Operations. Probably the best embodi-

ment of this work is Jez Humble and David

Farley’s seminal book Continuous Delivery:

Reliable Software Releases through Build, Test,

and Deployment Automation.

They codify many of the techniques required

to replicate the famous 2009 Velocity Confer-

ence presentation, “10+ Deploys per Day: Dev

and Ops Cooperation at Flickr,” given by John

Allspaw and Paul Hammond, as well as the Agile

system administration movement.

Continuous Delivery is the extension of con-

tinuous integration, which are the Development

practices that include continuous builds, contin-

uous testing, daily integration of branches back

into trunk, testing in a clone of the production

environment, etc. Continuous Delivery tech-

niques extend these processes all the way into

the production environment.

This makes continuous deployment a prereq-

uisite for the high deploy rates characterized

by DevOps and is therefore a needed skill set

for the modern DevOps practitioner. It will

also be the salvation for a generation of ITSM

practitioners.

Continuous Delivery is the perfect embodiment

of the First, Second, and Third Ways in The

Phoenix Project, as it emphasizes small batch

sizes (e.g., check into trunk daily), stopping the

line when problems occur (e.g., no new work

allowed when builds, tests, or deployments fail;

elevating the integrity of the system of work

over the work itself), and the need to continually

build the validation tests necessary to either

prevent failures in production, or, at the very least,

detect and correct them quickly (e.g., the transi-

tion from manual process reviews to automated

tests, especially in the ITSM release, change,

and configuration process areas).

—G ENE KIM

Continuous Delivery: Reliable
Software Releases through Build,
Test, and Deployment Automation

Jez Humble and David Farley

Addison-Wesley Professional, 2010

Order a copy.

The
First
Way

© 2015 IT Revolution | �itrevolution.com

http://itrevolution.com/links/continuousdelivery/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/continuousdelivery/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

31 �

Nhan Ngo, a QA engineer at Spotify, made four fabulous sketchnote illustrations while reading Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation by Jez Humble and David Farley. She has very generously made them available
for inclusion here under a Creative Commons license, and we very enthusiastically thank her for it.

Visualizing Continuous Delivery: Illustrations by Nhan Ngo

The
First
Way

http://itrevolution.com/links/nhanngo/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/spotify/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

32 �

The
First
Way

DevOps
Resource
Guide

33 �

The
First
Way

DevOps
Resource
Guide

34 �

The
First
Way

DevOps
Resource
Guide

35 �

Book Review

The Goal is a Socratic business
novel about Alex Rogo, a plant manager

who must fix his productions cost and delivery

issues in ninety days or his plant will be

shut down. Unable to find a way forward,

Alex recalls a chance meeting with a physicist

named Jonah. Through a series of phone

calls and meetings, Jonah teaches Alex about

the Theory of Constraints and the steps to

take to eliminate bottlenecks:

■	 Identify the constraint

■	 Exploit the constraint

■	 Subordinate all other activities to

the constraint

■	 Elevate the constraint to new levels

■	 Find the next constraint

In The Goal, the constraints were initially

the famous NCX-10 robot, then the heat treat

ovens, and then the constraint became market

demand. In The Phoenix Project, the constraint

was initially Brent, because he was always

dealing with unplanned work. Then it became

the application deployment process, and

then the constraint moved outside the organi-

zation because the needed MRP application

support was outsourced.

My coauthors and I studied this book for

nearly a decade, getting ready to write

The Phoenix Project. In many ways, I view our

book as an homage to The Goal. We attempted

to mirror most of the book structure and plot

elements while making it contemporary, relevant,

and, I hope, more dramatic. 

—G ENE KIM

© 2015 IT Revolution | �itrevolution.com

The Goal: A Process of
Ongoing Improvement

Eliyahu Goldratt and Jeff Cox

North River Press, 1992

Order a copy.

The
First
Way

http://itrevolution.com/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/thegoal/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/thegoal/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

36 �

Video

DevOps & Lean In Legacy Environments
presentation by Scott Prugh at DevOps Enterprise Summit 2014

Startups are continually evangelizing DevOps to be able to reduce risk, hasten feedback, and deploy

thousands of times a day. But what about the rest of the world that comes from Waterfall,

Mainframes, Long Release Cycles, and Risk Aversion? Learn how one company went from 480-day

lead times and six-month releases to three-month releases with high levels of automation and

increased quality across disparate legacy environments. We will discuss how optimizing people

and organizations, increasing the rate of learning, deploying innovative tools, and Lean system

thinking can help large-scale enterprises increase throughput while decreasing cost and risk. The
First
Way

http://itrevolution.com/links/does14-scottprugh/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

37 �

n n n n

n
 n
 n
 n

n n n n

n
 n
 n
 n

The
Second Way:
Amplify
Feedback Loops

DevOps
Resource
Guide

38 �

Survey

Teams that practice proactive monitoring are able to

diagnose and solve problems
faster, and they have a high
degree of accountability.
When failures are primarily reported by an

external source, such as the network operations

center (NOC)—or worse, by customers—

IT performance suffers. 

Proactive
Monitoring

 From “Top 5 Predictors of IT Performance,” 2014 State of DevOps Report | �© 2014 Puppet Labs | �puppetlabs.com

The
Second
Way

http://itrevolution.com/links/puppetlabs/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

39 �

Essay

XebiaLabs is a pioneer of automation software

for DevOps and Continuous Delivery that

helps companies accelerate the delivery of new

software. Viktor Clerc is product manager

for testing applications at XebiaLabs. You may

reach him at vclerc@xebialabs.com.

If You’re Going for Continuous Delivery without
Making Testing Your #1, You’re Doing It Wrong

Best Practices for Test Automation to Enable Continuous Delivery

Release cycles are accelerating as more businesses commit to

Agile Development methodologies and adopt DevOps and

Continuous Delivery. But, for all the advancement and modern-

ization in development processes and tooling, testing is often

forgotten.

The fastest delivery pipeline in the world isn’t very useful if most

of what you ship is broken. There must be some balance between

quality and speed. You need a real-time measure of risk and an ac-

curate overview of the quality of the features going through the

pipeline. These are prerequisites for making the right decision on

when and what to release—a decision you can’t make without put-

ting testing first.

How do you accelerate testing, manage test sets, and make sense

of the results in a rapidly shifting landscape? Here are four best

practices for putting quality at the heart of your Continuous

Delivery initiative.
The
Second
Way

http://itrevolution.com/links/xebialabs/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
mailto:vclerc%40xebialabs.com?subject=
http://itrevolution.com/links/xebialabs/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

40 �

1. Test automation, yes…but also
test analysis!

As your software progresses, the number of test jobs grows, and

manual testing soon becomes impractical. You also need to be able

to run them quickly, or testing becomes a bottleneck. How do

you manage unit tests, component tests, system tests, end-to-

end tests, browser tests, cross-browser tests, performance tests,

usability tests, regression and stability tests?

Automation is the obvious answer, and it’s a vital component in

any Continuous Delivery setup whose initial overhead is far out-

weighed by the savings you’ll make in the mid- to long term. It

enables you to run tests quickly and efficiently. But it’s important

to continue to allow for manual testing where necessary. There’s

no substitute for human exploratory testing, for example.

Building test automation into your pipeline is a process that’s

never finished and that requires constant fine-tuning if you want

to extract maximum value. There’s always a need to balance avail-

able resources and the pressure for greater speed with the right

standard of quality and an acceptable level of risk.

Even if you’re fully automated, it won’t be practical to run every

test for every release—you won’t have enough resources. How do

you decide which test sets to run? To make the right decisions, you

need to be able to accurately analyze your existing test results to

figure out which tests are required to give you the necessary level

of insight into quality and risk for the features currently going

through the pipeline.

As your software progresses, the
number of test jobs grows, and manual
testing soon becomes impractical.
You also need to be able to run them
quickly, or testing becomes a bottle-
neck. How do you manage unit
tests, component tests, system tests,
end-to-end tests, browser tests,
cross-browser tests, performance
tests, usability tests, regression
and stability tests? The

Second
Way

DevOps
Resource
Guide

41 �

3. Bring it all together

If you want to reap the rewards of Continuous Delivery, then you

need to build comprehensive testing into your pipeline from the

beginning. This is the only way to manage risk and achieve an ac-

ceptable level of quality as you are building your product or service.

The test management tooling you put in place for this needs to

be flexible to support a wide variety of different types of testing. It

must record all the relevant data from automated and manual

testing sessions, and combine that with contextual information on

the systems under test. It needs to be able to collate test results

from different tools and sources to provide a simple real-time

overview, and it should allow you to draw on historical perfor-

mance to identify trends.

In order to prevent your Continuous Delivery initiative from

turning into a high-speed train wreck, you need to put testing at

the center of your plans. Automating your tests, and then manag-

ing them as a coherent unit, enables your team to meet customer

demands faster…with higher-quality software.

2. Understand your test results

Can you say exactly what you’ve tested in any given moment? Do

you have an analysis of what that means for your product quality,

or the overall health of your pipeline? Risk, and even quality, can

be subjective, as developers, business stakeholders, and testers

may not have the same priorities. That’s why you want tooling that

allows you to change your definitions of quality and risk depending

on the decision-maker or the situation.

This is where a new generation of tools needs to come in to com-

bine and analyze complex sets of test results so you can easily vi-

sualize the quality level of the features in your delivery pipeline,

and make accurate and effective go/no-go decisions. The value of

each test you run is dramatically diminished if you aren’t doing

something with the data it produces. Without a broad overview

that encompasses all of your different test sets and test tools, it’s

impossible to get the big picture.

© Xebia Labs, Inc. | �xebialabs.com

The
Second
Way

	 Join others who have experienced the benefits of an automated testing solution built for DevOps
and Continuous Delivery. Try out the free community edition of XL Test.

http://itrevolution.com/links/xebialabs/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/xebialabs-xltest/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

42 �

Book Excerpt

Excerpt from
The DevOps Cookbook: How
to Create World-Class Agility,
Reliability, and Security
in Technology Organizations

Gene Kim, Patrick Debois,
Jez Humble, and John Willis

IT Revolution, 2015

Conduct Blameless
Postmortems

Operating within (and attempting to control) complex systems requires a

different mode of management. When failures occur, our goal is not to

“name, blame, and shame” the person who caused the failure. Instead, our goal

is to maximize our organizational learnings from it: understand how the acci-

dent occurred, equip ourselves to create the countermeasures required to

prevent it from happening again, and enable quicker detection and recovery.

One of the ways we institutionalize this is to conduct “blameless postmortems,”

a term coined by John Allspaw. The goal is to create feedback into the system,

implementing the goals of a Just Culture, where we are balancing safety and

accountability as well as enabling and cultivating high-trust relationships.

In his book Just Culture: Balancing Safety and Accountability, Sydney Dekker

writes,

Responses to incidents and accidents that are seen as unjust can impede safety

investigations, promote fear rather than mindfulness in people who do safety-

critical work, make organizations more bureaucratic rather than more careful,

and cultivate professional secrecy, evasion, and self-protection . . . A just cul-

ture is critical for the creation of a safety culture. Without reporting of failures

© 2015 Gene Kim, Patrick Debois, Jez Humble, and John Willis | �itrevolution.com

The
Second
Way

http://itrevolution.com/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/books/devops-cookbook/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

43 �

Book Excerpt

and problems, without openness and information

sharing, a safety culture cannot flourish.

Allspaw suggests that “by investigating mistakes in a

way that focuses on the situational aspects of a failure’s

mechanism and the decision-making process of individu-

als proximate to the failure, an organization can come out

safer than it would normally be if it had simply punished

the actors involved as a remediation.” He continues:

Anyone who’s worked with technology at any scale

is familiar with failure. Failure cares not about the

architecture designs you slave over, the code you

write and review, or the alerts and metrics you

meticulously pore through.

So when failures happen, what do we do with those

careless humans who caused everyone to have a

bad day? Maybe they should be fired. Or maybe

they need to be prevented from touching the

dangerous bits again. Or maybe they need more

training.

This is the traditional view of “human error,” which

focuses on the characteristics of the individuals

involved. It’s what Sidney Dekker calls the “Bad

Apple Theory”—get rid of the bad apples, and you’ll

get rid of the human error. Seems simple, right?

We don’t take this traditional view at Etsy. We in-

stead want to view mistakes, errors, slips, lapses,

etc. with a perspective of learning. Having blame-

less postmortems on outages and accidents are

part of that.

Allspaw isn’t just talking about a theory of high learn-

ing or abstract cultural changes. He isn’t suggesting that

everyone is off the hook or accountability is cast aside.

He’s seen the power of the blameless postmortem in ac-

tion, and it’s about balancing both safety and account-

ability.

When beginning a program of blameless postmortems,

first consider some basic guidelines, who will be included,

and an agenda. Bethany Macri, software engineer at Etsy,

explains their process: “Anyone interested in issue can

attend postmortems. In fact, this was how I learned about The
Second
Way

DevOps
Resource
Guide

44 �

Book Excerpt

what the Payments and Search team was doing, which is

mostly decoupled from the rest of the Etsy environment.

In 2013, Etsy had over thirty teams, and postmortems

are a great way to disseminate knowledge.”

We don’t just start out feeling safe sharing the details

of our mistakes. Those who have made mistakes must un-

derstand that by sharing, they will not be exposing them-

selves to punishment. This is an ongoing process that can

unfold based on a set of basic guidelines for our blameless

postmortems.

■	 Gather details from multiple perspectives on

failures to ensure we don’t single people out

■	 Empower employees with authority to

improve safety based on their detailed accounts

of their contributions to failures

■	 Enable and encourage people who do make

mistakes to be the experts on educating

the rest of the organization how not to make

them in the future

■	 Accept that humans can decide to make

actions or not, and that the judgement

of those decisions lies in hindsight

We schedule our postmortems for after the incident

has been satisfactorily resolved to focus everyone’s ener-

gy on the task at hand, not putting out an remaining em-

bers or ongoing flare-ups from the mistake. Alternately,

the postmortem should occur in a timely manner so all

details, analysis, and hindsight are still fresh and relevant,

maximizing learning potential for everyone involved.

While Etsy allows anyone who is interested to attend

blameless postmortems, there are certainly other criteria

for defining who should be in attendance. Consider invit-

ing the stakeholders who

■	 introduced the problem

■	 identified the problem

■	 responded to the problem

■	 diagnosed the problem

 We will hold postmortems for all significant issues

(i.e., P3 or more), which will guide the inclusiveness and

frequency of the meetings.

Just as important as who is attending the meeting is

the agenda for the meeting. It should be clear so as to

keep everyone on topic and to capture as much relevant The
Second
Way

DevOps
Resource
Guide

45 �

Book Excerpt

and detailed information as possible. The atmosphere

should be without fear and communication should be

without threat of punishment or retribution. Seeking

the following information from attending stakeholders

should guide the agenda:

■	 actions taken and at what time

■	 observed effects of the mistake

(ideally, in the form of metrics from

any production telemetry)

■	 expectations

■	 assumptions

■	 everyone’s understanding of the timeline of

events as they occurred

■	 investigation paths used

■	 resolutions considered

The most important output of the meeting is to pro-

pose effective countermeasures, which should result in

corrective work that is prioritized at the highest level (i.e.,

more important than daily work is the improvement of

daily work). This should ideally take the form of work

assigned, an owner, and a deadline.

Case Study: Blameless Postmortems

One of the best glimpses into the Etsy culture and

how it has shaped their tooling is outlined in Bethany

Macri’s 2014 DevOpsDays NYC talk, where she describes

their internally developed Morgue tool, used to help

facilitate the efficient recording and sharing of post-

mortem meetings.

At Etsy in 2013, they were averaging sixty million

unique monthly visitors, with one deployment happening

every twenty minutes. When anything went wrong, they

routinely held a postmortem meeting, developing

countermeasures at each one. They were even holding

postmortems for periods where nothing terrible went

wrong (e.g., after the 2012 holiday season, they held

one to review what problematic issues could have been

done better).

With over four years of operations, they were running

into issues with their previous means of recording post-

mortems, which was in an internal Wiki page. The prob-

lems included that the Wiki had become unsearchable,

unsaveable, and with only one person able to enter infor-

mation, it didn’t foster collaboration. The
Second
Way

DevOps
Resource
Guide

46 �

Book Excerpt

The result was they built Morgue, a tool that enabled

them to record for each issue the MTTR, severity (espe-

cially whether customers affected), time zones (to make

life easier for remote employees), Markdown formatting

for the “what happened” field, embedded images, tags,

and history. Morgue also records:

■	 whether the problem was scheduled or

unscheduled

■	 the postmortem owner

■	 relevant IRC lots (especially important for

3 a.m. issues)

■	 JIRA tickets and relevant due dates (especially

important for management)

■	 links to customer forums (where customers

complain about issues)

Macri remembers how John Allspaw wouldn’t let any-

one leave the meeting until “there were countermeasures

in JIRA, and with an owner and due dates assigned.”

At the time of this writing, they were even considering

flagging the use of “could” or “should” in the “what hap-

pened” field, as counterfactual language is not conducive

to blameless postmortems.

As a result of developing and using Morgue, she re-

ports that the number of recorded postmortems has

gone up significantly compared to Wiki, especially for P2,

P3, and P4. The conjecture is that because the process

of documenting postmortems is easier, more people are

doing it.

As Macri states, “This is great, because the more post-

mortems we hold, the more we are learning; and the

more we are learning, the more effective an organization

we are.”

“This is great, because the more
postmortems we hold, the more we
are learning; and the more we
are learning, the more effective
an organization we are.”

The
Second
Way 	 Sign up to receive updates about The DevOps Cookbook release.

http://itrevolution.com/books/devops-cookbook/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

47 �

Essay

Delphix is the market leader in Data as a Service,

helping enterprises accelerate application devel-

opment and achieve DevOps goals. The Delphix

DaaS Platform software installs on-premises or

in the cloud and automatically provides the right

data to the right team at the right time, breaking

the key development bottleneck. Over 20% of

Fortune 100 companies use Delphix to deliver

data 99% faster across development, testing, and

reporting environments, driving 50% increases

in productivity while improving data security.

Why Test Data Management
Is Broken

With almost every industry becoming part of the software in-

dustry—from stock trading to booksellers and from taxi compa-

nies to hotels—the ability to quickly develop innovative business

applications is driving competitive advantage. And with so much

depending on their applications, businesses must look for new

ways to improve the testing that ensures software quality.

In particular, today’s data-driven applications demand better

ways to collect, manage, and deliver the test data that so often de-

termines the success of quality assurance efforts. Test data man-

agement is hard, and it continues to confound even progressive

IT organizations that have adopted Agile and DevOps practices.

In fact, data-related tasks consume up to 60%1 of application de-

velopment schedules, shifting attention away from other value-

added activities. Three main factors contribute to this dynamic:

■	 The data that feeds business applications is growing

exponentially, both in volume and complexity
The
Second
Way

http://itrevolution.com/links/delphix/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

48 �

Subsetting Strategies

Data subsetting technologies emerged to overcome limitations in

copying and moving full, production-sized datasets. In theory,

smaller, more portable datasets can serve as substitutes for com-

plete ones as long as they constitute representative samples. In

practice, subsets fail to adequately embody the breadth of real-

world conditions, leading all too often to errors caught late in test-

ing or slipping through to production.

Synthetic Data

Synthetic data represents an alternative approach in which algo-

rithmically generated test data substitutes for data derived from

production sources. On one hand, synthetic data circumvents the

security issues involved in distributing “real data” containing po-

tentially sensitive information. On the other hand, it suffers from

some of the same shortcomings as subsetting approaches: even

large, intelligently generated datasets fail to adequately cover the

data permutations attendant in production sources.

■	 Slow processes and inflexible infrastructure increase the

time and cost it takes to deliver test data to QA teams

■	 Existing tools trade quality and completeness of test data

for convenience

In light of these challenges and limitations, organizations struggle

to implement truly dependable test data management practices.

Too often, testing is pushed to late in the software development

life cycle (SDLC), and testers are forced to work with incomplete

or compromised data. The end result is rework, delayed releases,

and costly bugs that cripple production systems: current industry

estimates place the cost of system downtime at $100,0002 per

hour for mission-critical applications.

The Four S’s of Test Data
Management: How Organizations
Manage Their Data Today

Four solutions typify test data management today: Subsetting,

Synthetic Data, Shared Environments, and Standalone Masking.

These approaches have reached widespread adoption and are

often used in combination with one another.

The
Second
Way

DevOps
Resource
Guide

49 �

organizations. Test data is constantly changing and growing, intro-

ducing the need for frequent data movement and updates across

environments. As a result, organizations largely avoid employing

rigorous masking procedures in an effort to avoid the associated

overhead.

Test Data Management Redefined:
A Model for Testing Solutions
that Accelerates Application Projects

The prevailing test data management approaches attempt to ame-

liorate the time and expense burden of creating full copies of pro-

duction data. However, the alternatives offer flawed solutions that

fail across one or more key dimensions. Shared environments of-

fer the potential for concurrent access, but collisions between tes-

ters erode data quality and consistency. Synthetic and subsetted

data creation requires time and effort that slows delivery and

yields non-representative or incomplete datasets.

Shared Test Data Environments

The inability to provision dedicated QA environments to indi-

vidual testers means that teams and projects often share test

datasets. Theoretically, sharing provides efficiency benefits by

giving multiple teams immediate, concurrent access to a common

data environment. But in practice, conflicts occur when more than

one stakeholder contends for the same resources at the same

time. The result is often a low-quality, chaotic test environment in

which data changes from test runs collide with each other, yielding

inconsistent and untrustworthy test results.

Standalone Masking Solutions

Further complicating test data management is the need to ensure

that sensitive information is protected when delivered to non-pro-

duction environments, including those used for testing. In fact,

for most organizations over 80% of all sensitive data resides in

non-production environments. Given the shortcomings of syn-

thetic data, as well as those of measures including access control

and encryption, data masking has become a de facto standard for

securing test data.

Unfortunately, the dynamic nature of the application lifecycle

renders standalone-masking solutions impractical for many

Data as a Service (DaaS)Full Production ClonesHigh Full Production Clones

Data Subsets
Synthetic Data Shared Data Environments

SPEED / ACCESSIBILITY OF TEST DATA

QUALITY OF
TEST DATA

Low

High

Low High The
Second
Way

DevOps
Resource
Guide

50 �

Data Speed: Shift Testing to the Left

Equally important as the quality of test data is the speed at which

it can be delivered. Fast data delivery allows for concentrated

testing cycles earlier in the SDLC. By shifting testing to the left,

teams can identify bugs when they are less expensive to remedy.

It also eliminates future rework, which accounts for 20% of soft-

ware development budgets for most organizations.3

Ideally, test data management solutions should have the ability to:

■	 Eliminate bottlenecks in the data delivery process

■	 Deliver test data in minutes instead of hours, days, or weeks

■	 Give developers and testers self-service control over

data sourcing and sharing

Data Security: Mask + Deliver Data

Finally, test data needs to be securely managed and delivered. Any

mechanism used to secure data must be operationally simple

enough to ensure that data in volatile environments is continuous-

ly protected. Test data management solutions must:

■	 Dynamically secure data as it changes

■	 Reduce the surface area of risk

■	 Eliminate privileged access to sensitive data

Any effective test data management solution needs to deliver

high-quality test environments, as well as have the ability to deliv-

er those environments with speed and efficiency. In addition, they

must accomplish these goals while protecting sensitive data.

Data Quality: Better Test Data, Better Applications

QA efforts depend on how closely the testing environment repro-

duces the production environment. Reproducing the production

environment, in turn, demands a solution that delivers full copies

of data instead of subsets.

In addition, testers require data that is temporally relevant. This

often means test data needs to be “fresh,” but it can also mean that

data needs to be set to a specific point in time. For example, data

for integration testing must be sourced across multiple reposito-

ries and synchronized to the same instant.

To maximize the productivity of individual test cycles, test data

management solutions should have the ability to:

■	 Non-disruptively deliver fresh data sourced from operational

production systems

■	 Provision data to a specific point in time

■	 Deliver complete, real data that allows for thorough testing

of edge and corner cases
The
Second
Way

DevOps
Resource
Guide

51 �

codebases. Since DaaS systems capture and version production

data over a window of time, testers can:

■	 Bookmark and share test data with teammates

■	 Refresh test data from the latest version production

■	 Reset test data back to prior point in time

■	 Branch data for performance and A/B testing

Application teams already have these capabilities for managing

source code through the test-fix-test cycle. With DaaS, they can

leverage the same capabilities for managing the data that the code

talks to.

While test data management will always present organizations

with vexing challenges, DaaS represents an enormous opportuni-

ty to allow testers to wrestle back control over data. And with a

quickly growing number of adopters, technology integrations, and

mature best practices, the value of DaaS-based tools will only

increase. Organizations will soon be faced with the decision to

continue using legacy tools, or transition to a new breed of DaaS

solutions that transform testing data management.

Better Test Data Management
with Data as a Service: Bring Quality,
Speed, and Security to Test Data

Technologies in the emerging category of Data as a Service (DaaS)

promise to deliver against key requirements for test data manage-

ment. DaaS platforms bring the benefits of virtualization to appli-

cation data by:

■	 Capturing data—including ongoing changes—

in production systems

■	 Versioning and managing data across the full

application lifecycle

■	 Delivering data to non-production systems,

including test environments

With intelligent block sharing and advanced compression, DaaS

platforms can provision complete, high-quality datasets to multi-

ple test environments while reducing infrastructure requirements.

DaaS also brings a new level of agility to test data management by

providing access to data in minutes, instead of days or weeks.

Moreover, DaaS allows application teams to treat databases like

©2015 Delphix | www.delphix.com

1 	Infosys Ltd., Test Data Management: Enabling reliable testing through realistic test data
2 	Cognizant, Transforming Test Data Management for Increased Business Value
3	 IDG Enterprise, Top CIO Challenges that Contribute to Enterprise Application Failure

The
Second
Way

	 To learn more about Delphix, or to try our free download, visit our website at www.delphix.com.
For any other questions, please contact us at info@delphix.com.

http://itrevolution.com/links/delphix/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/delphix/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
mailto:info@delphix.com

DevOps
Resource
Guide

52 �

The
Second
Way

Video

Nothing interrupts the continuous flow of value like bad surprises

that require immediate attention: major defects, service

outages, support escalations, or even scrapping just-completed

capabilities that don’t actually meet business needs.

You already know that the sooner you can discover a problem,

the sooner and more smoothly you can remedy it. Agile

practices involve testing early and often. However, feedback

comes in many forms, only some of which are traditionally

considered testing. Continuous integration, acceptance testing

with users, and even cohort analysis to validate business

hypotheses are all examples of feedback cycles.

This talk examines the many forms of feedback, the questions

each can answer, and the risks each can mitigate. We’ll take

a fresh look at the churn and disruption created by having high

feedback latency, when the time between taking an action

and discovering its effect is too long. We’ll also consider how

addressing “bugs” that may not be detracting from the actual

business value can distract us from addressing real risks.

Along the way we’ll consider fundamental principles that you

can apply immediately to keep your feedback cycles healthy

and happy.

On the Care and Feeding of Feedback Cycles
presentation by Elisabeth Hendrickson
at DevOps Enterprise 2014

http://itrevolution.com/links/does14-elisabethhendrickson/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

53 �

The Third Way:
Culture Experimentation

and Mastery
n

 n
 n

 n

n n n n

n n n n n n n n n n n n n n n n n n

DevOps
Resource
Guide

54 �

The
Third
Way

Essay

From Agile to DevOps at Microsoft
Developer Division

This is an excerpt from the ebook Our Journey

to Cloud Cadence, Lessons Learned at Microsoft

Developer Division by Sam Guckenheimer. The

broader book tells how a “box” software compa-

ny, delivering on-premises software releases on

a multiyear cadence, became an SaaS provider

as well, with Continuous Delivery from the public

cloud. It covers the DevOps engineering prac-

tices and tools that the organization needed to

evolve and the lessons learned.

How We Moved from Agile to DevOps

Over seven years, Microsoft Developer Division (DevDiv) em-

braced Agile. We had achieved a 15x reduction in technical debt

through solid engineering practices, drawn heavily from XP. We

trained everyone on Scrum, multidisciplinary teams, and product

ownership across the division. We significantly focused on the

flow of value to our customers. By the time we shipped Visual

Studio 2010, the product line achieved a level of customer recog-

nition that was unparalleled.

After we shipped VS2010, we knew that we needed to begin to

work on converting Team Foundation Server into a Software as a

Service (SaaS) offering. The SaaS version, now called Visual Studio

Online (VSO), would be hosted on Microsoft Azure, and to suc-

ceed with that we needed to begin adopting DevOps practices.

That meant we needed to expand our practices from Agile to

DevOps. What’s the difference?

©2015 Microsoft | �www.microsoft.com

http://itrevolution.com/links/microsoft/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/microsoft/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

55 �

The
Third
Way

Unlike many “born-in–the-cloud” companies, we did not start

with a SaaS offering. Most of our customers are using the on-

premises version of our software (Team Foundation Server, origi-

nally released in 2005 and now available in Version 2015). When

we started VSO, we determined that would we maintain a single

code base for both the SaaS and “box” versions of our product,

developing cloud-first. When an engineer pushes code, it triggers

a continuous integration pipeline. At the end of every three-

weekly sprint, we release to the cloud, and after 4–5 sprints, we

release a quarterly update for the on-premises product, as shown

in Figure 2.

Figure 2

Part of a DevOps culture is learning from usage. A tacit assump-

tion of Agile was that the Product Owner was omniscient and

could groom the backlog correctly. In contrast, when you run a

high-reliability service, you can observe how customers are

actually using its capabilities in near real-time. You can release

frequently, experiment with improvements, measure, and ask

customers how they perceive the changes. The data you collect

becomes the basis for the next set of improvements you do. In

this way, a DevOps product backlog is really a set of hypotheses

that become experiments in the running software and allow a

cycle of continuous feedback.

As shown in Figure 1, DevOps grew from Agile based on four

trends:

Figure 1

©2015 Microsoft | �www.microsoft.com

http://itrevolution.com/links/microsoft/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

56 �

The
Third
Way

the performance and usage allows us to ensure that there is no

issue at scale in the new service components.

Code Velocity and Branching

When we first moved to Agile in 2008, we believed that we would

enforce code quality with the right quality gates and branching

structure. In the early days, developers worked in a fairly elabo-

rate branch structure and could only promote code that satisfied a

stringent definition of done, including a gated check-in that effec-

tively did a “get latest” from the trunk and built the system with

the new changesets and ran the build policies.

The unforeseen consequence of that branch structure was many

days—sometimes months—of impedance in the flow of code from

the leaf nodes to the trunk, and long periods of code sitting in

branches unmerged. This created significant merge debt. When

work was ready to merge, the trunk had moved considerably, and

merge conflicts abounded, leading to a long reconciliation process

and lots of waste.

The first step we made, by 2010, was to significantly flatten the

branch structure so that there are now very few branches, and

they are usually quite temporary. We created an explicit goal to

optimize code flow: in other words, to minimize the time between

a check-in and that changeset becoming available to every other

dev working.

Exposure Control

When you are working on a service, you have the blessing of fre-

quent releases, in our case at the end of every three-weekly sprint.

This creates a great opportunity to expose work and a need to

control when it is exposed. Some of the issues that arise are:

■	 How do you work on features that span sprints?

■	 How do you experiment with features in order to get usage

and feedback when you know they are likely to change?

■	 How do you do “dark launches” that introduce services or

capabilities before you are ready to expose or market them?

In all of these cases, we have started to use the feature flag pat-

tern. A feature flag is a mechanism to control production exposure

of any feature to any user or group of users. As a team working on

the new feature, you can register a flag with the feature flag ser-

vice, and it will default down. When you are ready to have some-

one try your work, you can raise the flag for that identity in pro-

duction as long as you need. If you want to modify the feature, you

can lower the flag with no redeployment and the feature is no

longer exposed.

By allowing progressive exposure control, feature flags also pro-

vide one form of testing in production. We will typically expose

new capabilities initially to ourselves, then to our early adopters,

and then to increasingly larger circles of customers. Monitoring

©2015 Microsoft | �www.microsoft.com

http://itrevolution.com/links/microsoft/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

57 �

The
Third
Way

Agile on Steroids

We continue to follow Scrum, but stripped to its essentials for easy

communication and scaling across geographies. For example, the

primary work unit is a feature crew, equivalent to a Scrum team,

with the product owner sitting inside the team and participating

day in, day out. The Product Owner and Engineering Lead jointly

speak for the team.

We apply the principle of team autonomy and organizational

alignment. There is a certain chemistry that emerges in a feature

crew. Teams are multidisciplinary, and we have collapsed the

career ladders for developers and testers into a common engi-

neering role. (This has been a big morale booster.)

Teams are cohesive. There are 8–12 engineers in a crew. We try

to keep them together for 12–18 months minimum, and many

stay together much longer. If there is a question of balancing

work, we will ask a second crew to pull more backlog items, rather

than try to move engineers across crews.

The feature crew sits together in a team room. This is not part of

a large open space, but a dedicated room where people who are

working on a common area share space and can talk freely. Around

the team room are small focus rooms for breakouts, but free-form

conversations happen in the team room. When it’s time for a daily

standup, everyone stands up.

We have settled on three-weekly sprints, empirically. It’s proven

difficult for us to deliver enough value in shorter periods and coor-

The next step was to move to distributed version control, using

Git, which is now supported under VSO and TFS. Most of our

customers and colleagues continue to use centralized version

control and VSO and TFS support both models. Git has the advan-

tage of allowing very lightweight, temporary branches. A topic

branch might be created when deork item, and cleaned up when

the changes are merged into the mainline.

All the code lives in Master (the trunk) when committed, and the

pull-request workflow combined both code review and the policy

gates. This makes merging continuous, easy, and in tiny batches,

while the code is fresh in everyone’s mind.

This process isolates the developers’ work for the short period

it is separate and then integrates it continuously. The branches

have no bookkeeping overhead and shrivel when they are no

longer needed.

We created an explicit goal to optimize
code flow: in other words, to minimize
the time between a check-in and that
changeset becoming available to every
other dev working.

©2015 Microsoft | �www.microsoft.com

http://itrevolution.com/links/microsoft/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

58 �

The
Third
Way

We also keep planning lightweight. We will generally work to-

ward an 18-month vision, which acts as a true north. This may be

captured in some technology spikes, storyboards, conceptual

videos, and brief documents. Every six months we think of as a

season, “spring” or “fall,” and during this period we’ll be firmer

about commitments and dependencies across teams. Every three

sprints, the feature crew leads will get together for a “feature chat,”

in which they share their intended stack ranks, check for course

correction, ask for news, and synchronize against other teams.

dinate across worldwide sites. Longer periods have left too much

work dark. Some groups in Microsoft use two-weekly sprints,

while others effectively flight experiments of new work many

times per day without the time boxing of sprints at all.

The definition of done is conceptually very simple. You build it,

you run it. Your code will be deployed live to millions of users at the

end of the sprint, and if there are live-site issues, you (and every-

one else) will know immediately. You will remediate to root cause.

We rotate the role of Scrum master, so that everyone experienc-

es the responsibility of running the Scrum. We keep the sprint cer-

emonies as lightweight as possible for outward communication.

At the beginning of the sprint, the crew pulls its work from the

product backlog and communicates its sprint plan in a one page

email, hyperlinked to the product backlog items in VSO. The sprint

review is distributed as an update to this mail, with a roughly

three-minute video added. The video shows a demo, in customer

terms, of what you can now do as a result of the team’s accom-

plishments in the sprint.

	 Download the full ebook, Our Journey to Cloud Cadence, Lessons Learned at Microsoft Developer Division.

http://itrevolution.com/links/microsoft-devops/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

59 �

Survey

Version control provides a single source of truth for all
changes. That means when a change fails, it’s easy to pinpoint
the cause of failure and roll back to the last good state,
reducing the time to recover. Version control also promotes
greater collaboration between teams. The benefits of
version control shouldn’t be limited to application code;
in fact, our analysis shows that organizations
using version control for
both system and application
configurations have higher
IT performance. 

Version Control
for All
Production
Artifacts

 From “Top 5 Predictors of IT Performance,” 2014 State of DevOps Report | �© 2014 Puppet Labs | �puppetlabs.com

The
Third
Way

http://itrevolution.com/links/puppetlabs/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

60 �

Book Review

Decades of research have shown
us that failure is inherent in com-
plex systems. When failures occur, we all

too often mistakenly attribute the root cause as

“human error.” This is an especially unhelpful

conclusion when we have created a system

that is too complex to understand, let alone

operate and safely and repeatedly change.

Complex systems are not just the domain of

the largest computing systems, such as Google

and Amazon. If one of the primary attributes

of a complex system is that it defies any single

person’s ability to see the whole system and

understand how all the pieces fit together, then

virtually any significant technology-enabled

service we build qualifies as such.

To mitigate complexity, our goal is to create

a safe system of work, where we can operate

and make changes to our applications and

environments without constant fear that small

changes will have catastrophic failures.

Furthermore, when something goes wrong,

we must be capable of detecting and correcting

the problem early, ideally long before a custom-

er is impacted.

While designing perfectly safe systems is

likely beyond our abilities, Dr. Steven Spear

(credited for “decoding the Toyota Production

System” as part of his doctoral thesis at

Harvard Business School) has shown that “safe

systems are close to achievable when (a)

complex work is managed so that problems in

design are revealed, (b) problems that are

seen are solved so that new knowledge is built

quickly, and (c) the new knowledge, although

discovered locally, is shared throughout

the organization.”

In The High-Velocity Edge, Dr. Spear’s

model describes the causal mechanism that

explains the long-lasting success of the

Toyota Production System, Alcoa, and many

others. Among them is the US Navy’s Nuclear

© 2015 IT Revolution | �itrevolution.com

The High-Velocity Edge: How
Market Leaders Leverage
Operational Excellence to Beat
the Competition

Dr. Steven Spear

McGraw-Hill, 2010

Order a copy.

The
Third
Way

http://itrevolution.com/links/thehighvelocityedge/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/thehighvelocityedge/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

61 �

Book Review

Power Propulsion Program, which has provided

over 5,700 reactor-years of operation without

a single reactor-related casualty or escape of

radiation. They achieved this by integrating into

their daily work of design and operations a need

to continually test their assumptions of reality,

enabling a culture of learning, and turning their

learnings into systemic improvements that

prevent future failures. Spears writes,

Whatever knowledge the group had, it

was assumed to be inadequate. There was

no room for guessing; learning had to be

constant and fast, not only experiential

but experimental. They made explicit their

best understanding and expectation of

what actions would lead to what outcomes,

which created constant opportunities to

learn and improve.

Their intense commitment to scripted

procedures, incident reports about even

seemingly minor departures from or

failures of procedure, and the rapid update

of procedures and of system designs enable

a young crew and their officers setting

out for their first cruise to have over 5,700

reactor-years of experience underpinning

their individual expertise.

Not surprisingly, these principles and

behaviors can be seen in all high-performing

DevOps organizations, as well. 

—G ENE KIM

The
Third
Way

DevOps
Resource
Guide

62 �

Essay

Continuous Discussions (#c9d9)

Electric Cloud is the leader in enterprise

Continuous Delivery and DevOps automation,

helping organizations deliver better software

faster by automating and accelerating

build, test and deployment processes at scale.

Industry leaders like Qualcomm, SpaceX,

Cisco, GE, Gap and E*TRADE use Electric

Cloud’s solutions to boost DevOps productivity

and Agile throughput.

Powered by the DevOps community

“DevOps and Continuous Delivery are as much about people

and process as technology. We think connecting with peers

and sharing experiences, lessons learned, tips and best practices

is the best way to accelerate our mutual success.”

—ANDERS WALLG REN , C TO AT ELEC TRIC CLOU D

DevOps is a team sport. It’s all about collaboration: bringing

people and teams together to ask interesting questions, experi-

ment, and continuously improve.

It is in this spirit of collaboration that Electric Cloud hosts

“Continuous Discussions” (#c9d9), an open forum to discuss Agile,

DevOps and Continuous Delivery. Each episode focuses on a

different software delivery use case and features DevOps

practitioners, who join us as panelists over Hangout, to discuss

their views.

© 2015 Electric Cloud | �electric-cloud.com

The
Third
Way

http://itrevolution.com/links/electric-cloud/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/electric-cloud-continuousdelivery/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/electric-cloud-c9d9/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/electric-cloud/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/electric-cloud-c9d9/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

63 �

c9d9 exposes DevOps as it exists in the real world, with panel-

ists who are passionate about what they do and eager to share

what they know. Anyone can attend or sign up as a panelist to

discuss the ins and outs of delivering better software, faster—not

just as a slogan, but as a daily practice.

Check out some of the recent episodes:

The
Third
Way

	 To watch previous episodes of Continuous Discussions (#c9d9) and to join the next live episode, visit electric-cloud/c9d9.
Be sure to chime-in on Twitter using #c9d9.

Deployment Automation

Continuous Delivery

Continuous Testing and Test Acceleration

DevOps and Lean in Legacy Environments

CI Best Practices

Consistent Deployments Across
Dev, Test and Prod

http://itrevolution.com/links/electric-cloud-c9d9/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/electric-cloud-c9d9/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/electric-cloud-c9d9/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

64 �

Book Review

Twenty years ago, Mike Rother visited

Toyota plants with a team of researchers and

American car manufacturing executives.

He observed and codified the Toyota practices

that led to their extraordinary and market-

leading performance. These processes and

culture must exist to enable the Lean Plan,

Do, Check, Act (PDCA) cycle.

The most obvious manifestation of the

Toyota Kata is the two-week improvement

cycle, in which every work center supervisor

must improve something (anything!) every

two weeks. To quote Mr. Rother, “The practice

of kata is the act of practicing a pattern so

it becomes second nature. In its day-to-day

management, Toyota teaches a way of working—

a kata—that has helped make it so successful

over the last six decades.”

These two-week improvement cycles put

constant pressure into the system, forcing it to

improve by providing a systematic, scientific

routine that can be applied to any problem

or challenge, commonizing how the members

of an organization develop solutions, migrating

managers toward a role of coach and mentor

by having them practice coaching cycles, and

framing PDCA in a way that has people taking

small steps every day.

The need for daily repetition to create habits

and change outcomes is well established in

the domains of sports, music, the military, and

now modern manufacturing. This forms the

basis of Erik’s Third Way in The Phoenix Project.

He explains, “It’s about how to create a culture

that simultaneously fosters experimentation,

learning from failure, and understanding that

repetition and practice are the prerequisites

to mastery.”

In The Phoenix Project, Patty’s ITIL/ITSM cru-

sade is very much like Lean practitioners who

were never able to replicate the performance of

Toyota. Why? They’d do a Lean Kaizen event once

per year but then get marginalized from daily

operations the remainder of the year. Mr. Rother

asserts that if a system is not improving, the re-

sult is not a steady state, but instead, because of

entropy, organizational performance declines.

—G ENE KIM

© 2015 IT Revolution | �itrevolution.com

Toyota Kata: Managing People
for Improvement, Adaptiveness,
and Superior Results

Mike Rother

McGraw-Hill, 2009

Order a copy.

The
Third
Way

http://itrevolution.com/links/toyotakata/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/toyotakata/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

65 �

Growth
and

Change
n

 n
 n

 n
 n

 n
 n

 n
 n

n
 n

 n
 n

 n
 n

 n
 n

 n
 n

 n

n
 n

 n
 n

 n
 n

 n
 n

 n
 n

 n

n
 n

 n
 n

 n
 n

 n
 n

 n
 n

 n
 n

DevOps
Resource
Guide

66 �

Video

The federal government spends more than $80 billion each year

on information technology. As the fiasco with healthcare.gov

demonstrates, the results are not always good. Government

IT programs are expensive and monolithic, and the lead time

from a “mission need” to a deployed capability is often measured

in years (in one of our agency’s programs, about 12 years!).

IT systems are often difficult to use, and the US government’s

online service offerings to citizens are far from meeting the

expectations of a public that is used to Google, Facebook,

and Twitter.

The US government has only recently begun to adopt Agile

approaches, and only in a few agencies. But the results have been

encouraging, and they show that it is possible for the bureaucra-

cy to be Agile. DevOps, however is a game changer. At USCIS we

have moved to a continuous integration and Continuous Delivery

approach, and we have begun experimenting with a DevOps

model tailored to the needs of the government.

By combining DevOps with some ideas taken from the Lean

Startup movement, I believe we can cause a radical change

in how the government does IT. We can dramatically reduce

lead times and costs, improve the usability of systems, provide

more transparency, create citizen-centric online services,

and—importantly—significantly improve the government’s

security posture.

How DevOps Can Fix Federal Government
presentation by Mark Schwartz
at DevOps Enterprise Summit 2014

Growth
and
Change

http://itrevolution.com/links/does14-markschwartz/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/healthcare/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

67 �

Essay

The Secret to Scaling DevOps

In this excerpt from “The Secret to Scaling

DevOps,” we share actionable steps to

successfully implement and scale DevOps in

the enterprise. The secret is to lead

with Agile operations and let DevOps happen

naturally. Rally provides software and

services that drive agility. Learn more.

One of the top indicators of IT performance is a “high-trust”

culture, and in practice, that culture is almost impossible to distin-

guish from an Agile culture. DevOps is really just an example of

Agile culture and process: getting previously siloed organizations

collaborating, side-by-side, working together towards the common

goals of delivering customer value faster and getting feedback at

regular intervals.

When you hear about large companies succeeding with DevOps,

it’s often because they’ve implemented continuous integration

and deployment in a new line of business or a progressive IT

project. But what does it look like to implement DevOps in a more

traditional operations organization? What does it look like to

introduce DevOps into organizations that aren’t high-trust envi-

ronments? It looks like, and is, Agile.

© 2015 Rally | �rallydev.com/devops

Growth
and
Change

http://itrevolution.com/links/rallydev-devops/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/rallydev/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/rallydev/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

68 �

1.	 Create an Agile development/engineering/IT

organization

2.	 Create an Agile operations organization

3.	 Make sure a feature can flow from one organization

to the other seamlessly

Agile Engineering & IT

After more than a decade of scaling Agile development in software

engineering and IT, we know what works. We’ve found that when

your engineering and IT teams are collaborating to deliver smaller

batches of work more frequently, you’ve set the stage for opera-

tions to follow suit. When leadership teams are acting as servant

leaders, trusting their teams to raise issues and risks, prioritizing

work based on customer value, and continuously improving, you

have a high-trust culture.

The business benefits of Agile in software engineering alone are

extraordinary. Cut time to market from 12–18 months to three.

Cut defects in half. Raise customer satisfaction. All of this is neces-

sary for being successful with Agile operations and DevOps.

Leaders and change agents who’ve successfully tackled both

DevOps and Agile revolutions within large enterprises can tell

courageous stories about embracing disruption inside their orga-

nizations. However, the fundamental challenge for DevOps cham-

pions is that they too often focus on software solutions for what

are inherently cultural problems: lack of trust, collaboration, and

common practices.

Through hundreds of large-scale Agile development and IT

transformations in this kind of organization, we’ve found that im-

plementing and scaling DevOps requires not only culture change

but end-to-end adoption of Agile methodologies. Leading with the

tooling, as so many companies do when they try to do DevOps,

leaves out the benefits that silo-busting agility delivers. Scalable

DevOps begins with Agile, not the other way around.

Architecting the (Business) System

Businesses must take a systems approach to how their engineer-

ing and operations teams work together. It requires viewing the

entire technology organization as a single Agile delivery team,

with shared success measures and outcomes based on the value

that’s delivered to customers. This takes effort and time, but by

breaking the work down into smaller, actionable steps you can get

going immediately:
Growth
and
Change

© 2015 Rally | �rallydev.com/devops

http://itrevolution.com/links/rallydev/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

69 �

Operations teams may also feel like their core values are at risk:

after all, you’ve chartered these teams with preserving the stabili-

ty and reliability of customer-facing systems. It can seem counter-

intuitive that delivering more frequently reduces risk and increases

quality; until quality and performance become personal and team

responsibilities, it’s hard to imagine this change.

Every operations group struggles with balancing planned and

unplanned work, and interrupts are the mortal enemy of having

reliable velocity. Agile operations helps to buffer unplanned work

as much as possible, allowing some part of the group to stay focused

on delivering planned customer value without risking stability to

everyday operations.

Ops teams with focused, planned work can successfully adopt

engineering best practices like using version control, configuration

management tools, test automation, pairing, and integrated testing.

In an Agile operations organization, you begin seeing steel thread

or minimum viable versions of infrastructure that avoid the all-or-

nothing waterfall approach that was previously the norm. And,

you see empathy and understanding flourish between systems

engineers and software engineers as their worlds begin looking

quite a bit alike.

Agile Operations

Creating an Agile operations group presents many of the same

challenges as creating an Agile development or IT organization,

but it is equally necessary for successful DevOps. Here are some

common objections to overcome:

■	 Agile practices and culture viewed as “not possible in this

organization”

■	 Systems engineering seen as a lesser skill / expertise

set (note: QA and testing suffered the same perception

before Agile)

Businesses must take a systems
approach to how their engineering and
operations teams work together.
It requires viewing the entire technology
organization as a single Agile delivery
team, with shared success measures
and outcomes based on the value that’s
delivered to customers.

Growth
and
Change

© 2015 Rally | �rallydev.com/devops

http://itrevolution.com/links/rallydev/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

70 �

Results

If you take these three steps, how are your people? Thinking Lean,

behaving with agility. Feeling valued, empowered, and trusted.

Communicating and collaborating.

Your processes? Agile across the whole technology delivery

group—delivering highest customer value first, in small batches, at

frequent intervals, with regular customer feedback.

Technology and tools? Supporting the processes and people. If

Agile lifecycle management software is used to track all of the

work, and teams share a common chat/collaboration tool, then

you’re able to send any feature seamlessly between the two

groups, now one Agile delivery organization.

The business value delivered to your customers? You’re delivering

high-quality value with fewer defects and higher customer

satisfaction than ever before. You’re delivering at speeds you

never thought possible for a large enterprise.

That’s what it means to scale DevOps.

Seamless Flow of a Feature

At this point in your journey, DevOps, as many envision is largely

done. But this last step is the crux of scaling DevOps. The seamless

flow of a feature refers to much more than code delivered through

a traditional CI/CD (continuous integration / continuous deploy-

ment) pipeline. A feature in an Agile operations group could

include infrastructure, disaster recovery, compliance, analytics,

and many other traditional IT core competencies.

The way the work is prioritized, iterated on, and implemented is

exactly the same, regardless of the value being delivered—this is

the value of having Agile underpinnings throughout the delivery

organization. Without it, DevOps tends to too narrowly define

what can and can’t be delivered seamlessly since it relies on tool-

ing scoped to specific tasks.

Growth
and
Change

	 Attend RallyON! for more information on “The Secret to Scaling DevOps,” and to learn from your peers (who are doing
this every day). For more information about how Rally can help you scale DevOps visit www.rallydev.com/devops.

© 2015 Rally | �rallydev.com/devops

http://itrevolution.com/links/rallydev-devops/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/rallydev/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/rallydev/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

71 �

Book Excerpt

Excerpt from
Lean Enterprise: How High
Performance Organizations
Innovate at Scale

Jez Humble, Joanne Molesky,
Barry O’Reilly

O’Reilly Media, 2015

Amazon’s Approach
to Growth

In 2001, Amazon had a problem: the huge, monolithic “big ball of mud” that

ran their website, a system called Obidos, was unable to scale. The limiting

factor was the databases. CEO Jeff Bezos turned this problem into an opportu-

nity. He wanted Amazon to become a platform that other businesses could

leverage, with the ultimate goal of better meeting customer needs. With this

in mind, he sent a memo to technical staff directing them to create a service-

oriented architecture, which Steve Yegge summarizes thus:

1.	 All teams will henceforth expose their data and functionality through

service interfaces.

2.	 Teams must communicate with each other through these interfaces.

3.	 There will be no other form of interprocess communication allowed:

no direct linking, no direct reads of another team’s data store, no shared-

memory model, no back-doors whatsoever. The only communication

allowed is via service interface calls over the network.

4.	 It doesn’t matter what technology they use. HTTP, Corba, Pubsub,

custom protocols—doesn’t matter. Bezos doesn’t care.

© 2015 O’Reilly Media | �oreilly.com

Growth
and
Change

http://itrevolution.com/links/oreilly/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/leanenterprise/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

72 �

Book Excerpt

5.	 All service interfaces, without exception,

must be designed from the ground up to be

externalizable. That is to say, the team must

plan and design to be able to expose the

interface to developers in the outside world.

No exceptions.

6.	 Anyone who doesn’t do this will be fired.

Bezos hired West Point Academy graduate and ex-

Army Ranger Rick Dalzell to enforce these rules. Bezos

mandated another important change along with these

rules: each service would be owned by a cross-functional

team that would build and run the service throughout its

lifecycle. As Werner Vogels, CTO of Amazon, says, “You

build it, you run it.” This, along with the rule that all ser-

vice interfaces are designed to be externalizable, has

some important consequences. As Vogels points out, this

way of organizing teams “brings developers into contact

with the day-to-day operation of their software. It also

brings them into day-to-day contact with the customer.

This customer feedback loop is essential for improving

the quality of the service.”

Each team is thus effectively engaged in product de-

velopment—even the people working on the infrastruc-

tural components that comprise Amazon Web Services,

such as EC2. It’s hard to overemphasize the importance

of this transition from a project-based funding and deliv-

ery paradigm to one based on product development.

One of the biggest problems as organizations grow is

maintaining effective communication between people

and between teams. Once you move people to a different

floor, a different building, or a different timezone, com-

munication bandwidth becomes drastically limited and it

becomes very hard to maintain shared understanding,

trust, and effective collaboration. To control this prob-

lem, Amazon stipulated that all teams must conform to

the “two pizza” rule: they should be small enough that

two pizzas can feed the whole team—usually about 5 to

10 people.

Growth
and
Change

DevOps
Resource
Guide

73 �

Book Excerpt

This limit on size has four important effects:

1.	 It ensures the team has a clear, shared under-

standing of the system they are working on. As

teams get larger, the amount of communication

required for everybody to know what’s going on

scales in a combinatorial fashion.

2.	 It limits the growth rate of the product or service

being worked on. By limiting the size of the team,

we limit the rate at which their system can evolve.

This also helps to ensure the team maintains a

shared understanding of the system.

3.	 Perhaps most importantly, it decentralizes power

and creates autonomy, following the Principle of

Mission. Each two-pizza team (2PT) is as autono-

mous as possible. The team’s lead, working with

the executive team, would decide upon the key

business metric that the team is responsible for,

known as the fitness function, that becomes the

overall evaluation criteria for the team’s experi-

ments. The team is then able to act autonomously

to maximize that metric, using the techniques we

describe in Chapter 9.

4.	 Leading a 2PT is a way for employees to gain some

leadership experience in an environment where

failure does not have catastrophic consequenc-

es—which “helped the company attract and retain

entrepreneurial talent.” An essential element of

Amazon’s strategy was the link between the orga-

nizational structure of a 2PT and the architectural

approach of a service-oriented architecture.

To avoid the communication overhead that can kill

productivity as we scale software development, Amazon

leveraged one of the most important laws of software

development—Conway’s Law: “Organizations which de-

sign systems...are constrained to produce designs which

are copies of the communication structures of these or-

ganizations.” One way to apply Conway’s Law is to align

API boundaries with team boundaries. In this way we can

distribute teams all across the world. So long as we have

each service developed and run by a single, co-located,

autonomous cross-functional team, rich communication

between teams is no longer necessary.

Growth
and
Change

DevOps
Resource
Guide

74 �

Book Excerpt

Organizations often try to fight Conway’s Law. A com-

mon example is splitting teams by function, e.g., by put-

ting engineers and testers in different locations (or, even

worse, by outsourcing testers). Another example is when

the front end for a product is developed by one team, the

business logic by a second, and the database by a third.

Since any new feature requires changes to all three, we

require a great deal of communication between these

teams, which is severely impacted if they are in separate

locations. Splitting teams by function or architectural lay-

er typically leads to a great deal of rework, disagreements

over specifications, poor handoffs, and people sitting idle

waiting for somebody else.

Amazon’s approach is certainly not the only way to

create velocity at scale, but it illustrates the important

connection between communication structures, leader-

ship, and systems architecture.

To avoid the communication overhead
that can kill productivity as we scale
software development, Amazon leveraged
one of the most important laws of
software development—Conway’s Law:

“Organizations which design systems...
are constrained to produce designs
which are copies of the communication
structures of these organizations.”

Growth
and
Change

	 Order a copy of Lean Enterprise: How High Performance Organizations Innovate at Scale.

http://itrevolution.com/links/leanenterprise/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

75 �

Survey

One of the pillars of DevOps is culture, and we were pleased to

prove what we already knew anecdotally: culture matters. In fact,

organizational culture was highly
predictive of both IT performance and
overall organizational performance.
No one should be surprised to hear that high-trust cultures lead
to greater performance, while bureaucratic and fear-based
cultures are destructive to performance. 

High-Trust
Organizational
Culture

 From “Top 5 Predictors of IT Performance,” 2014 State of DevOps Report | �© 2014 Puppet Labs | �puppetlabs.com

Growth
and
Change

http://itrevolution.com/links/puppetlabs/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

76 �

Essay

Learnings:
Practices Where We Gauge Our Excellence

This is an excerpt from the ebook Our Journey

to Cloud Cadence, Lessons Learned at Microsoft

Developer Division by Sam Guckenheimer.

As we have moved to DevOps, we have come

to assess our growth in seven practice

areas, which we collectively think of as the

Second Decade of Agile.

Agile scheduling and teams. This is consistent with Agile, but

more lightweight. Feature crews are multidisciplinary, pull from a

common product-backlog, minimize work in process, and deliver

work ready to deploy live at the end of each sprint.

Management of technical debt. Any technical debt you carry is

a risk, which will generate unplanned work, such as Live Site

Incidents, that will interfere with your intended delivery. We are

very careful to be conscious of any debt items and to schedule

paying them off before they can interfere with the quality of

service we deliver. (Occasionally, we have misjudged, as in the

VS 2013 launch story above, but we are always transparent in

our communication.)

Flow of value. This means keeping our backlog ranked according

to what matters to the customers and focusing on the delivery of

value for them. We always spoke of this during the first decade of

Agile, but now with DevOps telemetry, we can measure how much

we are succeeding and whether we need to correct our course.

©2015 Microsoft | �www.microsoft.com

Growth
and
Change

http://itrevolution.com/links/microsoft/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/microsoft/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

77 �

Figure 3

Hypothesis-based backlog. Before DevOps, the product owner

groomed the backlog based on the best input from stakeholders.

Nowadays, we treat the backlog as a set of hypotheses, which we

need to turn into experiments, and for which we need to collect

data that supports or diminishes the hypothesis. Based on that

evidence we can determine the next move in the backlog and per-

severe (do more) or pivot (do something different).

Evidence and data. We instrument everything, not just for

health, availability, performance, and other qualities of service,

but to understand usage and to collect evidence relative to the

backlog hypotheses. For example, we will experiment with chang-

es to user experience and measure the impact on conversion rates

in the funnel. We will contrast usage data among cohorts, such as

weekday and weekend users, to hypothesize ways of improving

the experience for each.

Production first mindset. That data is reliable only if the quality

of service is consistently excellent. We always track the live site

status, remediate any live site issues at root cause, and proactively

identify any outliers in performance to see why they are experi-

encing slowdowns.

Cloud ready. We can only deliver a 24 × 7 × 365 service by

continually improving our architecture to refactor into more inde-

pendent, discrete services and by using the flexible infrastructure

of the public cloud. When we need more capacity, the cloud (in

our case Azure) provides it. Every new capability we develop

cloud-first and then move into our on-premises product, with a

few very intentional exceptions, knowing that it has been hard-

ened at scale and that we have received continuous feedback from

constant usage.

Growth
and
Change

	 Download the full ebook, Our Journey to Cloud Cadence, Lessons Learned at Microsoft Developer Division.

http://itrevolution.com/links/microsoft-devops/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

78 �

Book Review

Patrick Lencioni posits that one of

the core contributors to a team’s inability to

achieve goals is due to lack of trust. In his model,

the five dysfunctions are

■	 Absence of trust—unwilling to be vulnerable

within the group

■	 Fear of conflict—seeking artificial harmony

over constructive passionate debate

■	 Lack of commitment—feigning buy-in for

group decisions creates ambiguity throughout

the organization

■	 Avoidance of accountability—ducking the

responsibility to call peers on counterpro-

ductive behavior, which sets low standards

■	 Inattention to results—focusing on

personal success, status, and ego before

team success

With the bitter intertribal warfare that has

existed between Development and Operations,

as well as between IT and “the business,” we

very much need the lessons of Mr. Lencioni to

achieve the DevOps ideal. Often, the first step in

using Mr. Lencioni’s methodology is for leaders

to become more vulnerable (or, at the very

least, start by modeling vulnerable behaviors).

In The Phoenix Project, Steve has already inter-

nalized these practices for decades and leads

what is called a personal history exercise.

I was fortunate enough to have personally

observed and benefited from Mr. Lencioni’s tech-

niques when my former boss, Jim B. Johnson,

first joined as CEO of Tripwire, Inc. He shared his

own story, which was so personal and touching it

left the rest of us on the executive team emotion-

ally raw, with tears in (almost) everyone’s eyes.

In turn, we all had to share some elements

of our own stories, showing vulnerability to

each other and enabling the next step, which is

to stop fearing conflict. Jim set the tone of the

honesty and candor he demanded from everyone.

It changed us, and we started acting more like

a team.

This was probably one of the most important

lessons in my life. It is now my aspiration in

every domain of my life to never fear conflict,

telling the truth, or saying what I really think.

I’d be delusional to think I can fully achieve

this, but it’s still a worthy goal.

—G ENE KIM

© 2015 IT Revolution | �itrevolution.com

The Five Dysfunctions of a Team:
A Leadership Fable

Patrick Lencioni

Jossey-Bass, 2011

Order a copy.

Growth
and
Change

http://itrevolution.com/links/fivedysfunctions/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/fivedysfunctions/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

79 �

State of DevOps Report

With combined responses

of over 18,000, this annual

report is the largest and

most comprehensive DevOps

study to date. You can read

the full 2013 and 2014

reports. The 2015 report,

a collaboration by Puppet

Labs and IT Revolution

and sponsored by PWC,

is due to be released in

summer 2015.

DevOps Cafe

Hosted by Damon Edwards

and John Willis, this series

of mostly monthly podcasts

spans a wide range of DevOps

topics—both philosophical

and practical. You’ll find

book reviews, interviews,

and how-tos.

DevOps Meetups

Never underestimate the

power of the Meetup.

This is a thriving community

comprising over 1,000 groups

and 210,000 members in

64 countries.

The Ship Show

The Ship Show is a twice-

monthly podcast, featuring

discussion on everything

from build engineering to

DevOps to release manage-

ment, plus interviews,

new tools and techniques,

and reviews.

DevOps Enterprise Summit

on YouTube

This YouTube channel has

30+ recordings of presenta-

tions from the inaugural

DevOps Enterprise Summit,

held October 21–23, 2014.

DevOps Weekly

Described as “a weekly slice

of DevOps news,” this

newsletter by Gareth

Rushgrove has approximately

15,000 subscribers and

an issue archive extending

back to 2010.

DevOps Days

Known as “the conference

that brings development

and operations together,”

this series of ongoing events

happen in 12–15 locations

a year. You can probably

find one near you! And if

not, there’s information

on planning your very own

DevOps Days.

Next
Here are a few
more resources to
further your
DevOps research
and discovery.
We’ve gathered a
sampling of
podcasts, news-
letters, reports,
videos, and
opportunities to
connect with
the wider DevOps
community.

http://itrevolution.com/links/puppetlabs-2013devops/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/puppetlabs-2014devops/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/devopscafe/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/devopsmeetups/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/theshipshow/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/does14/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/devopsweekly/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/devopsdays/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

80 �

IT Revolution assembles technology leaders and

practitioners through publishing, events, and research.

Our goal is to elevate the state
of technology work, quantify
the economic and human costs
associated with suboptimal
IT performance, and improve
the lives of one million
IT professionals by 2017.

To stay updated on IT Revolution’s publishing,

events, and research opportunities, please

subscribe to our newsletter.

About IT Revolution

http://itrevolution.com/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

81 �

Listen to the first 16 chapters FREE on Purchase the audiobook onListen to the first 16 chapters FREE on Purchase the audiobook on

The Phoenix Project:

A Novel About IT, DevOps, and Helping Your Business Win

Gene Kim, Kevin Behr, George Spafford

				 is an IT manager at Parts Unlimited.
It's Tuesday morning and on his drive into the office,
Bill gets a call from the CEO.

The company's new IT initiative, code named Phoenix Project, is critical

to the future of Parts Unlimited, but the project is massively over budget

and very late. The CEO wants Bill to report directly to him and fix the mess

in 90 days, or else Bill's entire department will be outsourced.

With the help of a prospective board member and his mysterious philoso-

phy of The Three Ways, Bill starts to see that IT work has more in common

with manufacturing plant work than he ever imagined. With the clock ticking,

Bill must organize work flow, streamline interdepartmental communications,

and effectively serve the other business functions at Parts Unlimited.

In a fast-paced and entertaining style, three luminaries of the DevOps move-

ment deliver a story that anyone who works in IT will recognize. Readers will

not only learn how to improve their own IT organizations, they’ll never view IT

the same way again.

 Bill

For bulk orders, please e-mail:

orders@itrevolution.net

Buy the book.

Narrated by Chris Ruen

https://soundcloud.com/itrevolution
https://itunes.apple.com/us/audiobook/phoenix-project-novel-about/id981293333?ign-mpt=uo%3D4]!
http://www.audible.com/pd/Business/The-Phoenix-Project-Audiobook/B00VAZZY32/ref=a_search_c4_1_1_srTtl?qid=1428436966&sr=1-1]
http://amzn.to/1JvtQ49
http://itrevolution.com/links/itrevolution-soundcloud/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/thephoenixproject-itunes/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/thephoenixproject-audible/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/thephoenixproject-audiobook/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/thephoenixproject/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
mailto:orders%40itrevolution.net?subject=
http://itrevolution.com/links/thephoenixproject/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

82 �

The DevOps Cookbook:
How to Create World-Class Agility,

Reliability, and Security

in Technology Organizations

We’ve been quiet on The DevOps Cookbook,

but we’re still at it! After receiving some

incredible feedback in early 2015, we’ve been

hard at work making revisions.

If you’d like to stay informed on the book and

what’s to come, sign up to receive updates.

DevOps Enterprise Summit

DevOps Enterprise is the event for people who are bringing

Lean principles into the IT value stream while building

DevOps and Continuous Delivery into their organization.

Join us for an incredible three-day event with the best

practitioners from large and complex organizations, across

all industry verticals. Lineup to include keynotes from industry

luminaries and speakers from well-known enterprises who

will share their enterprise DevOps initiatives. This event is a

joint partnership between Electric Cloud and IT Revolution.

For more information on registering for the conference,

submitting a proposal to present, or becoming a sponsor,

please visit the conference website.

http://itrevolution.com/books/devops-cookbook/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/devopsenterprise/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide
http://itrevolution.com/links/devopsenterprise/?utm_medium=pdf&utm_source=itrevolution&utm_campaign=devops-resource-guide

DevOps
Resource
Guide

83 �83 �

Acknowledgments

We’d like to thank Delphix, Electric Cloud, Microsoft, New Relic,

Rally, and XebiaLabs for contributing their outstanding content

to our efforts to accomplish our mission.

And this excellent resource would never have come to be without

the contributions of time, talent, and tenacity by Todd Sattersten,

Gene Kim, Robyn Crummer-Olson, Alex Broderick-Forster, and

Stauber Design Studio.

	Contents
	Introduction
	Starting
with DevOps
	Why Do DevOps?
	Where It All Started:
10+ Deploys Per Day: Dev and Ops Cooperation at Flickr
	How Does DevOps ‘Work?’
	Business Objectives Specific to Scaling DevOps
	Win-Win Relationship between
	The First Way:
System Flow from Left to Right
	Bill Learns about Bottlenecks
	Peer-Reviewed Change Approval Process
	Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment Automation
	The Goal: A Process of
Ongoing Improvement
	DevOps & Lean in Legacy Environments
	The Second Way: Amplify Feedback Loops
	Proactive Monitoring
	If You’re Going for Continuous Delivery Without
Making Testing Your #1, You’re Doing It Wrong
Best Practices for Test Automation to Enable Continuous Delivery
	Conduct Blameless Postmortems
	Why Test Data Management
is Broken
	On the Care and Feeding of Feedback Cycles
	The Third Way: Culture Experimentation and Mastery
	From Agile to DevOps at Microsoft
Developer Division
	Version Control for All Production Artifacts
	The High-Velocity Edge: How
	Continuous Discussions (#c9d9)
	Toyota Kata: Managing People for Improvement, Adaptiveness and Superior Results
	Growth and Change
	How DevOps Can Fix Federal Government
	The Secret to Scaling DevOps
	Amazon’s Approach
to Growth
	High-Trust Organizational Culture
	Learnings:
Practices Where We Gauge Our Excellence
	The Five Dysfunctions of a Team:
A Leadership Fable
	Next
	About IT Revolution
	The Phoenix Project
	DevOps Enterprise Summit and The DevOps Cookbook
	Acknowledgments

	Button 14:
	Page 21: Off
	Page 32: Off
	Page 43: Off
	Page 54: Off
	Page 65: Off
	Page 116: Off
	Page 127: Off
	Page 138: Off
	Page 149: Off
	Page 1510: Off
	Page 2111: Off
	Page 2212: Off
	Page 2913: Off
	Page 3614: Off
	Page 3715: Off
	Page 3816: Off
	Page 3917: Off
	Page 4018: Off
	Page 4119: Off
	Page 4720: Off
	Page 4821: Off
	Page 4922: Off
	Page 5023: Off
	Page 5124: Off
	Page 5225: Off
	Page 5326: Off
	Page 5427: Off
	Page 5528: Off
	Page 5629: Off
	Page 5730: Off
	Page 5831: Off
	Page 5932: Off
	Page 6233: Off
	Page 6334: Off
	Page 6535: Off
	Page 6636: Off
	Page 6737: Off
	Page 6838: Off
	Page 6939: Off
	Page 7040: Off
	Page 7541: Off
	Page 7642: Off
	Page 7743: Off
	Page 7944: Off
	Page 8045: Off
	Page 8146: Off
	Page 8247: Off
	Page 1: Off

	Button 15:
	Page 21: Off
	Page 32: Off
	Page 43: Off
	Page 54: Off
	Page 65: Off
	Page 116: Off
	Page 127: Off
	Page 138: Off
	Page 149: Off
	Page 1510: Off
	Page 2111: Off
	Page 2212: Off
	Page 2913: Off
	Page 3614: Off
	Page 3715: Off
	Page 3816: Off
	Page 3917: Off
	Page 4018: Off
	Page 4119: Off
	Page 4720: Off
	Page 4821: Off
	Page 4922: Off
	Page 5023: Off
	Page 5124: Off
	Page 5225: Off
	Page 5326: Off
	Page 5427: Off
	Page 5528: Off
	Page 5629: Off
	Page 5730: Off
	Page 5831: Off
	Page 5932: Off
	Page 6233: Off
	Page 6334: Off
	Page 6535: Off
	Page 6636: Off
	Page 6737: Off
	Page 6838: Off
	Page 6939: Off
	Page 7040: Off
	Page 7541: Off
	Page 7642: Off
	Page 7743: Off
	Page 7944: Off
	Page 8045: Off
	Page 8146: Off
	Page 8247: Off
	Page 1: Off

	Chapter - page 4:
	Chapter - page 5:
	Button 34:
	Button 35:
	Chapter - page 8:
	Button 36:
	Button 37:
	Chapter - page 6:
	Chapter - page 7:
	Chapter - page 9:
	Button 38:
	Button 39:
	Chapter - page 10:
	Button 40:
	Button 41:
	Chapter - page 11:
	Chapter - page 12:
	Chapter - page 13:
	Chapter - page 14:
	Chapter - page 15:
	Chapter - page 16:
	Button 21:
	Page 171: Off
	Page 182: Off
	Page 193: Off
	Page 204: Off
	Page 235: Off
	Page 246: Off
	Page 257: Off
	Page 268: Off
	Page 279: Off
	Page 2810: Off
	Page 3011: Off
	Page 3512: Off
	Page 4213: Off
	Page 4314: Off
	Page 4415: Off
	Page 4516: Off
	Page 4617: Off
	Page 6018: Off
	Page 6119: Off
	Page 6420: Off
	Page 7121: Off
	Page 7222: Off
	Page 7323: Off
	Page 7424: Off
	Page 7825: Off
	Page 1:

	Button 22:
	Page 171: Off
	Page 182: Off
	Page 193: Off
	Page 204: Off
	Page 235: Off
	Page 246: Off
	Page 257: Off
	Page 268: Off
	Page 279: Off
	Page 2810: Off
	Page 3011: Off
	Page 3512: Off
	Page 4213: Off
	Page 4314: Off
	Page 4415: Off
	Page 4516: Off
	Page 4617: Off
	Page 6018: Off
	Page 6119: Off
	Page 6420: Off
	Page 7121: Off
	Page 7222: Off
	Page 7323: Off
	Page 7424: Off
	Page 7825: Off
	Page 1:

	Chapter - page 18:
	Chapter - page 19:
	Chapter - page 20:
	Chapter - page 21:
	Chapter - page 22:
	Chapter - p 22:
	Chapter - p 23:
	Chapter - p 24:
	Chapter - p 25:
	Chapter - p 26:
	Chapter - p 27:
	Chapter - p 28:
	Chapter - p 29:
	Button 24:
	Button 25:
	Chapter - p 30:
	Button 26:
	Button 27:
	Chapter - p 31:
	Button 28:
	Button 29:
	Chapter - p 32:
	Button 30:
	Button 31:
	Chapter - p 33:
	Chapter - p 34:
	Chapter - p 36:
	Chapter p 37:
	Chapter p 39:
	Chapter p 40:
	Chapter p 38:
	Chapter p 41:
	Chapter p 55:
	Chapter p 56:
	Chapter p 57:
	Chapter p 58:
	Chapter p 59:
	Chapter p 60:
	Chapter p 61:
	Chapter p 62:
	Chapter p 63:
	Chapter p 64:
	Chapter p65:
	Chapter p66:
	Chapter p67:
	Chapter p68:
	Chapter p69:
	Chapter p70:
	Chapter p71:
	Chapter p72:
	Chapter p73:
	Chapter p74:
	Chapter p75:
	Chapter p76:
	Chapter p77:
	Chapter p 42:
	Chapter p 54:
	Chapter p 53:
	Chapter p 52:
	Chapter p 51:
	Chapter p 46:
	Chapter p 45:
	Chapter p 47:
	Chapter - page 17:
	Button1:
	Button2:
	Button3:
	Button4:
	Button5:

