
White Paper

xebialabs.com

Enterprise Software Delivery in the
Age of Docker and Other Containers

Executive Summary
Most of today’s forward-thinking companies are investigating
container technology as a potentially better way to deliver
software. Containers let developers bundle all of the necessary
components of an application into one package that can easily
be shared and distributed, which can greatly simplify deploy-
ment to test, user acceptance and production environments.

However, containers by themselves solve only a fraction of the challenges enterprises face

as they try to deliver high quality software, quickly and securely, with adherence to

compliance standards and industry regulations. The usual release challenges do not

disappear just by implementing containers. And in many cases, containers create

additional complexity and dependencies that must be managed. In addition, it will be a

long time (if ever) before enterprises work exclusively with containers. So for many years

to come, companies still need to manage diverse infrastructures and hybrid environments.

Containers are a great technology for software delivery, but if you want to use them at

enterprise scale – beyond individual green-field experiments – there are critical

management considerations that you can’t overlook, or you will create a painful and

costly minefield.

So how do companies take advantage of container technology and at the same time

consider their broader needs? To be successful with containers in the enterprise,

they need to be able to scale with a consistent deployment process across hybrid

environments. They also need to carefully manage and orchestrate the entire release

pipeline. And they need visibility into the overall release process, including status of all

components, dependencies between parts, and which versions and configurations are

present in all environments. And although containers give developers the power to

package software for deployment, enterprises still need to enforce control over the

delivery process and log all activities to ensure compliance. As companies move to

container technologies, these enterprise needs must be addressed.

2White Paper

xebialabs.com

The Benefits of Docker and other Containers
Docker, Mesos, Kubernetes and other container management tools allow you
to package an application into a standardized, self-contained unit for software
deployment. Containers include everything the application or a service needs
to run: code, runtime, system tools, and system libraries in a form that is easily
installed on a server. The contents of the container run in a protected execution
space, isolating the application or service and making it easier to manage.
Because container formats are portable, any execution environment that supports
a container standard like Docker can run the container.

Containers represent a “new paradigm” in which applications and services can
be delivered as sets of versioned containers by delivery teams. Companies are
intrigued because containers…

 Give developers more control by simplifying application delivery

 Are more initially responsive because they start up faster (with no Virtual

Machine and host OS to boot up, they can start/stop in seconds)

 Have a smaller runtime and storage footprint than Virtual Machines, which

reduces storage and network bandwidth needs

 Are an enabling technology for microservices architectures

 Provide horizontally scalable components, potentially making it easier to

load-balance the application or service

 Let you better manage to a set of operational resource constraints by

setting resource utilization limits at the container level (good for cloud

architectures)

Where Containers Need A Boost
Containers are ideal for pushing out small-scale applications that aren’t
constrained by enterprise requirements. However, containers are currently
unproven for highly reliable, highly scalable production applications. There are
many unresolved issues, and with the overall market shifting rapidly, it is very
difficult to figure out which tools and approaches are likely to survive in the long
run. By themselves, the available tools and frameworks generally don’t offer
everything an enterprise needs in order to release high quality software quickly
and at scale.

The usual release challeng-
es do not disappear just by
implementing containers.

3White Paper

xebialabs.com

As enterprises progress beyond the initial investigation of containers, they discover
there is more to orchestrating multiple, interdependent containerized applications
than they expect – whether they’re using Docker directly or one of the many con-
tainer orchestration frameworks. Most discover very quickly that containers are not
a complete solution, and they realize that they have to accommodate a mixture of
containers and traditional application environments.

One of the biggest benefits of containers is that some deployment technicalities
become easier: developers can “ship” the application code together with the op-
erating environment. However, the actual release process doesn’t go away and the
typical challenges faced throughout an enterprise-scale software delivery process
stay the same. Containers don’t offer a few key capabilities that are critical to meet
enterprise demands.

1. Standard and Repeatable Processes for Hybrid Environments
Today, containers exist in broader scenarios that also include Virtual Machines and
traditional environments (a.k.a. hybrid environments). Container adoption is so
nascent that it will be a very long time, if ever, before an organization only needs
container management tools. They will continue to need to support components
like databases and systems that are not containerized and that live in a variety of
different environments.

Organizations still need a standardized, repeatable way to deploy software across
all environments. Release processes must be followed and rules must be enforced,
whatever the underlying technologies. And enterprise teams need a deployment
model that automatically adjusts for any environment, following consistent process-
es across all targets.

2. Dependency and Complex Process Management
Containers can show quick value for simple deployments, but as you introduce
multiple interdependent services and scale, you will find that the complexity can
quickly spiral out of control and must be managed.

For example, Docker and containers are very often used for microservices archi-
tectures. As applications are broken into smaller chunks, it’s critical to be able to
manage the relationships between its services and components. Microservices
architectures have many more moving parts and often involve more releases, so
there is a much stronger need for release and deployment platforms that manage
dependencies and give a holistic view of what’s happening in your process: think
tens or even hundreds of services coming together to deliver the full business
application that will be running in production.

In addition, today’s DevOps processes not only have dependencies between
components in a release, they have multiple interdependent pipelines that require
advanced release processes, such as release trains and master/sub-releases.

Containers are a great tech-
nology for software delivery,
but if you want to use them
at enterprise scale – beyond
individual green-field exper-
iments – there are critical
management considerations
that you can’t overlook, or
you will create a painful and
costly minefield.

4White Paper

xebialabs.com

3. Compliance, Security, Reporting, Audit Trails, and Process Control
Science experiments and pilot programs may be able to ignore enterprise
considerations, but production environments can’t. Core enterprise capabilities
like compliance and control measures, enterprise security enforcement, process
control, audit trails, and the ability to generate reports are missing entirely from
most of today’s containers and frameworks. You need a way to make sure that
processes are followed and logged, and that compliance, governance and security
are enforced for all applications and components…. as well as for new deployment
targets as they come online.

Further complicating matters, containers wrap up everything into one package.
But when you deliver “the whole machine” each time, you have less knowledge of
what’s really “in” there. It’s difficult to control what the developer did, and this lack
of control opens companies to security and governance problems: what is
delivered may or may not be compliant with the applicable rules and regulations.
And if a company needs to do a SOX or PCI audit, they’ll have to audit the entire
container.

4. Real-time Visibility into Processes and Components
Containers simplify deployment packages, but they don’t simplify release
processes… and in fact they often add complexity as you introduce more moving
parts and release more quickly. To bring order to the chaos, people from across the
organization, from Development to Operations to Management to Security – both
technical and non-technical – need to be able to easily tell what’s going on, where
and when, across all systems. Teams need an integrated dashboard that shows
real-time status of all application components, release processes and deployment
artifacts. And if they are committed to continuous improvement, they need to be
able to capture metrics across the whole pipeline.

In addition, containers often have different OS configuration and middleware
versions, as well as different versions of the same app. It’s difficult to know what’s
running a particular container, unless you use very technical interfaces (picture
hundreds of lines of log files). As versions of components multiply and
environments proliferate, it’s especially important to know which versions are
deployed where, the current status of all components in an environment, and what
the environment configuration looks like. Think about how you will answer a simple
question such as, “Which version am I testing?! And what does the environment
look like?”

Harnessing the Power of Containers for Enterprise
Application Delivery
It’s nearly impossible to scale to handle complex container scenarios without
collaborative, cross-departmental tools to help orchestrate releases and automate
deployments.

Forrester Research analysts Kurt Bittner and Michael Facemire write in their
February 2015 report, Application Design To Application Composition: How APIs,

As app code complexity
declines, managing
service dependencies
looms. As applications move
from being tightly-coupled
monoliths to loosely
coupled networks of
services, organizations will
need better means for
managing them.

Applications will be
composed of potentially
hundreds or thousands of
services, sourced from
different vendors and
running in many different
environments, with
dependencies managed at
runtime. Versions matter,
as a particular version of an
application is dependent
on particular versions of the
services it uses.

Managing this complexity
is beyond human capability,
and new tools will be
needed to help.

Forrester Research, Feb 2015,
Application Design To
Application Composition:
How APIs, Micro-Services, And
Containers Are Changing The
Way Organizations Develop
And Deliver Software

5White Paper

xebialabs.com

Micro-Services, And Containers Are Changing The Way Organizations Develop
And Deliver Software: “Managing this complexity is beyond human capability, and
new tools will be needed to help.”

Release Orchestration and Deployment Automation tools can play a vital role in
bridging the gap between the promise of containers and the realities of complex
enterprise application delivery. These tools provide key functions that IT teams
need to complement container use in diverse enterprise environments:

 Standardization, automation and control of complex software release

pipelines and deployment processes

 Dependency management between applications and between release

processes

 Complete visibility into the software delivery process and deployment

status across all environments

 Compliance, security, reporting, governance, and audit trails enforced

throughout your release process

 Hybrid deployments managed across a mixture of containers, VMs,

and traditional environments

 Release and deployment information that is easily accessible across all

teams, both technical and non-technical

Conclusion: How to Address the Enterprise
Challenges Presented by Container Technologies
Docker and container frameworks are up-and-coming technologies that can greatly
improve software delivery for large companies and regulated enterprises, provided
they are well managed and implemented with enterprise requirements in mind:

1. Standard and repeatable processes that work for hybrid environments

2. A good way to manage and orchestrate complex processes and dependencies

3. Infrastructure to address Compliance, Control, Security, Reporting, and Audit

requirements

4. Real-time visibility into all aspects of release processes and components

As companies continue to accelerate development and release software at
enterprise scale, they can address these requirements with Release Orchestration
and Deployment Automation tools, which manage and control the many moving
parts in their pipelines and environments.

6White Paper

xebialabs.com

Where in the pipeline are new versions and features currently? How do they depend on each other?
Where are the bottlenecks in my process?

XL Release lets you automate, orchestrate and get visibility into your release pipelines – at enterprise
scale. It allows you to easily define and run delivery pipelines for multi-container, microservice and
hybrid scenarios, with templates for decoupled release trains, coordinated master and sub-releases,
and other advanced release patterns. Rich dashboards, release metrics and audit trails give you
confidence that processes are followed and that your team is kept informed about the status at each
step. As you scale, you need XL Release to manage your complex release pipelines and dependencies
between components.

XebiaLabs and Containers
XebiaLabs tools complement container technology and help companies achieve
Continuous Delivery at Enterprise scale.

7White Paper

xebialabs.com

Where are all versions of my current services running? Are they all compatible with each other? How
do I know my deployment process is consistent across all environments?

With its agentless architecture and model-based approach, XL Deploy is the most advanced deploy-

ment automation tool available today, automating and standardizing complex deployments to any

target environment. It automatically handles complex multi-container and hybrid deployment scenarios,

integration with your Continuous Delivery pipeline, environment-specific configuration, rollbacks, and

more. XL Deploy lets you handle multi-container and deployments to any target with ease. And once

your deployment tasks are modeled in XL Deploy, you can be sure they will work repeatably and will
automatically adapt to new targets.

About XebiaLabs
XebiaLabs develops enterprise-scale Continuous Delivery and DevOps software,
providing companies with the visibility, automation and control to deliver software
faster and with less risk. Global market leaders rely on XebiaLabs to meet the
increasing demand for accelerated and more reliable software releases.

For more information, please visit www.xebialabs.com.

Orchestrate, automate and get visibility into release pipelines

Automate and standardize complex application deployments

Continuous Delivery at Enterprise Scale

Analyze test results across multiple test tools

 Learn more and try for free at www.xebialabs.com

xebialabs.com

http://www.xebialabs.com
https://xebialabs.com/products/xl-release/
https://xebialabs.com/products/xl-deploy/
https://xebialabs.com/products/xl-testview/
http://xebialabs.com/

