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Introduction
Imagine you had a time machine that could go back one minute, or
an hour. Think about what you could do with it. From the perspec‐
tive of other people, it would seem like there was nothing you
couldn’t do, no contest you couldn’t win.

In the real world, there are three basic ways to win. One way is to
have something, or to know something, that your competition does
not. Nice work if you can get it. The second way to win is to simply
be more intelligent. However, the number of people who think they
are smarter is much larger than the number of people who actually
are smarter.

The third way is to process information faster so you can make and
act on decisions faster. Being able to make more decisions in less
time gives you an advantage in both information and intelligence. It
allows you to try many ideas, correct the bad ones, and react to
changes before your competition. If your opponent cannot react as
fast as you can, it does not matter what they have, what they know,
or how smart they are. Taken to extremes, it’s almost like having a
time machine.

An example of the third way can be found in high-frequency stock
trading. Every trading desk has access to a large pool of highly intel‐
ligent people, and pays them well. All of the players have access to
the same information at the same time, at least in theory. Being
more or less equally smart and informed, the most active area of
competition is the end-to-end speed of their decision loops. In
recent years, traders have gone to the trouble of building their own
wireless long-haul networks, to exploit the fact that microwaves
move through the air 50% faster than light can pulse through fiber
optics. This allows them to execute trades a crucial millisecond
faster.

Finding ways to shorten end-to-end information latency is also a
constant theme at leading tech companies. They are forever working
to reduce the delay between something happening out there in the
world or in their huge clusters of computers, and when it shows up
on a graph. At Facebook in the early 2010s, it was normal to wait
hours after pushing new code to discover whether everything was
working efficiently. The full report came in the next day. After build‐

http://tabbforum.com/opinions/the-rise-of-next-gen-wireless-technology-in-financial-services?print_preview=true&single=true
http://tabbforum.com/opinions/the-rise-of-next-gen-wireless-technology-in-financial-services?print_preview=true&single=true


ing their own distributed in-memory database and event pipeline,
their information loop is now on the order of 30 seconds, and they
push at least two full builds per day. Instead of slowing down as they
got bigger, Facebook doubled down on making more decisions
faster.

What is your system’s end-to-end latency? How long is your decision
loop, compared to the competition? Imagine you had a system that
was twice as fast. What could you do with it? This might be the most
important question for your business.

In this book we’ll explore new models of quickly processing infor‐
mation end to end that are enabled by long-term hardware trends,
learnings from some of the largest and most successful tech compa‐
nies, and surprisingly powerful ideas that have survived the test of
time.

—Carlos Bueno
Principal Product Manager at MemSQL,

author of The Mature Optimization Handbook
and Lauren Ipsum



CHAPTER 1

When to Use In-Memory Database
Management Systems (IMDBMS)

In-memory computing, and variations of in-memory databases,
have been around for some time. But only in the last couple of years
has the technology advanced and the cost of memory declined
enough that in-memory computing has become cost effective for
many enterprises. Major research firms like Gartner have taken
notice and have started to focus on broadly applicable use cases for
in-memory databases, such as Hybrid Transactional/Analytical Pro‐
cessing (HTAP for short).

HTAP represents a new and unique way of architecting data pipe‐
lines. In this chapter we will explore how in-memory database solu‐
tions can improve operational and analytic computing through
HTAP, and what use cases may be best suited to that architecture.

Improving Traditional Workloads with In-
Memory Databases
There are two primary categories of database workloads that can
suffer from delayed access to data. In-memory databases can help in
both cases.
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Online Transaction Processing (OLTP)
OLTP workloads are characterized by a high volume of low-latency
operations that touch relatively few records. OLTP performance is
bottlenecked by random data access—how quickly the system finds
a given record and performs the desired operation. Conventional
databases can capture moderate transaction levels, but trying to
query the data simultaneously is nearly impossible. That has led to a
range of separate systems focusing on analytics more than transac‐
tions. These online analytical processing (OLAP) solutions comple‐
ment OLTP solutions.

However, in-memory solutions can increase OLTP transactional
throughput; each transaction—including the mechanisms to persist
the data—is accepted and acknowledged faster than a disk-based
solution. This speed enables OLTP and OLAP systems to converge
in a hybrid, or HTAP, system.

When building real-time applications, being able to quickly store
more data in-memory sets a foundation for unique digital experien‐
ces such as a faster and more personalized mobile application, or a
richer set of data for business intelligence.

Online Analytical Processing (OLAP)
OLAP becomes the system for analysis and exploration, keeping the
OLTP system focused on capture of transactions. Similar to OLTP,
users also seek speed of processing and typically focus on two
metrics:

• Data latency is the time it takes from when data enters a pipe‐
line to when it is queryable.

• Query latency represents the rate at which you can get answers
to your questions to generate reports faster.

Traditionally, OLAP has not been associated with operational work‐
loads. The “online” in OLAP refers to interactive query speed,
meaning an analyst can send a query to the database and it returns
in some reasonable amount of time (as opposed to a long-running
“job” that may take hours or days to complete). However, many
modern applications rely on real-time analytics for things like per‐
sonalization and traditional OLAP systems have been unable to
meet this need. Addressing this kind of application requires rethink‐

2 | Chapter 1: When to Use In-Memory Database Management Systems (IMDBMS)



ing expectations of analytical data processing systems. In-memory
analytical engines deliver the speed, low latency, and throughput
needed for real-time insight.

HTAP: Bringing OLTP and OLAP Together
When working with transactions and analytics independently, many
challenges have already been solved. For example, if you want to
focus on just transactions, or just analytics, there are many existing
database and data warehouse solutions:

• If you want to load data very quickly, but only query for basic
results, you can use a stream processing framework.

• And if you want fast queries but are able to take your time load‐
ing data, many columnar databases or data warehouses can fit
that bill.

However, rapidly emerging workloads are no longer served by any
of the traditional options, which is where new HTAP-optimized
architectures provide a highly desirable solution. HTAP represents a
combination of low data latency and low query latency, and is deliv‐
ered via an in-memory database. Reducing both latency variables
with a single solution enables new applications and real-time data
pipelines across industries.

Modern Workloads
Near ubiquitous Internet connectivity now drives modern work‐
loads and a corresponding set of unique requirements. Database
systems must have the following characteristics:

Ingest and process data in real-time
In many companies, it has traditionally taken one day to under‐
stand and analyze data from when the data is born to when it is
usable to analysts. Now companies want to do this in real time.

Generate reports over changing datasets
The generally accepted standard today is that after collecting
data during the day and not necessarily being able to use it, a
four- to six-hour process begins to produce an OLAP cube or
materialized reports that facilitate faster access for analysts.
Today, companies expect queries to run on changing datasets
with results accurate to the last transaction.

Modern Workloads | 3



Anomaly detection as events occur
The time to react to an event can directly correlate with the
financial health of a business. For example, quickly understand‐
ing unusual trades in financial markets, intruders to a corporate
network, or the metrics for a manufacturing process can help
companies avoid massive losses.

Subsecond response times
When corporations get access to fresh data, its popularity rises
across hundreds to thousand of analysts. Handling the serving
workload requires memory-optimized systems.

The Need for HTAP-Capable Systems
HTAP-capable systems can run analytics over changing data, meet‐
ing the needs of these emerging modern workloads. With reduced
data latency, and reduced query latency, these systems provide pre‐
dictable performance and horizontal scalability.

In-Memory Enables HTAP
In-memory databases deliver more transactions and lower latencies
for predictable service level agreements or SLAs. Disk-based systems
simply cannot achieve the same level of predictability. For example,
if a disk-based storage system gets overwhelmed, performance can
screech to a halt, wreaking havoc on application workloads.

In-memory databases also deliver analytics as data is written, essen‐
tially bypassing a batched extract, transform, load (ETL) process. As
analytics develop across real-time and historical data, in-memory
databases can extend to columnar formats that run on top of higher
capacity disks or flash SSDs for retaining larger datasets.

Common Application Use Cases
Applications driving use cases for HTAP and in-memory databases
range across industries. Here are a few examples.

Real-Time Analytics
Agile businesses need to implement tight operational feedback loops
so decision makers can refine strategies quickly. In-memory databa‐
ses support rapid iteration by removing conventional database bot‐
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tlenecks like disk latency and CPU contention. Analysts appreciate
the ability to get immediate data access with preferred analysis and
visualization tools.

Risk Management
Successful companies must be able to quantify and plan for risk.
Risk calculations require aggregating data from many sources, and
companies need the ability to calculate present risk while also run‐
ning ad hoc future planning scenarios.

In-memory solutions calculate volatile metrics frequently for more
granular risk assessment and can ingest millions of records per sec‐
ond without blocking analytical queries. These solutions also serve
the results of risk calculations to hundreds of thousands of concur‐
rent users.

Personalization
Today’s users expect tailored experiences and publishers, advertisers,
and retailers can drive engagement by targeting recommendations
based on users’ history and demographic information. Personaliza‐
tion shapes the modern web experience. Building applications to
deliver these experiences requires a real-time database to perform
segmentation and attribution at scale.

In-memory architectures scale to support large audiences, converge
a system or record with a system of insight for tighter feedback
loops, and eliminate costly pre-computation with the ability to cap‐
ture and analyze data in real time.

Portfolio Tracking
Financial assets and their value change in real time, and the report‐
ing dashboards and tools must similarly keep up. HTAP and in-
memory systems converge transactional and analytical processing
so portfolio value computations are accurate to the last trade.

Now users can update reports more frequently to recognize and cap‐
italize on short-term trends, provide a real-time serving layer to
thousands of analysts, and view real-time and historical data
through a single interface (Figure 1-1).
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Figure 1-1. Analytical platform for real-time trade data

Monitoring and Detection
The increase in connected applications drove a shift from logging
and log analysis to real-time event processing. This provides busi‐
nesses the ability to instantly respond to events, rather than after the
fact, in cases such as data center management and fraud detection.
In-memory databases ingest data and run queries simultaneously,
provide analytics on real-time and historical data in a single view,
and provide the persistence for real-time data pipelines with Apache
Kafka and Spark (Figure 1-2).

Figure 1-2. Real-time operational intelligence and monitoring

Conclusion
In the early days of databases, systems were designed to focus on
each individual transaction and treat it as an atomic unit (for exam‐
ple, the debit and credit for accounting, the movement of physical
inventory, or the addition of a new employee to payroll). These criti‐
cal transactions move the business forward and remain a corner‐
stone of systems-of-record.

Yet, a new model is emerging where the aggregate of all the transac‐
tions becomes critical to understanding the shape of the business
(for example, the behavior of millions of users across a mobile
phone application, the input from sensor arrays in Internet of
Things (IoT) applications, or the clicks measured on a popular web‐
site). These modern workloads represent a new era of transactions
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requiring in-memory databases to keep up with the volume of real-
time data and the interest to understand that data in real time.

Common Application Use Cases | 7





CHAPTER 2

First Principles of Modern
In-Memory Databases

Our technological race to the future with billions of mobile phones,
an endless stream of online applications, and everything connected
to the Internet has rendered a new set of modern workloads. Our
ability to handle these new data streams relies on having the tools to
handle large volumes of data quickly across a variety of data types.
In-memory databases are key to meeting that need.

The Need for a New Approach
Traditional data processing infrastructures, particularly the databa‐
ses that serve as a foundation for applications, were not designed for
today’s mobile, streaming, and online world. Conventional databa‐
ses were designed around slow mechanical disk drives that cannot
keep up with modern workloads. Conventional databases were also
designed as monolithic architectures, making them hard to scale,
and forcing customers into expensive and proprietary hardware
purchases.

A new class of in-memory solutions provides an antidote to legacy
approaches, delivering peak performance as well as capabilities to
enhance existing and support new applications.

For consumers, this might mean seeing and exchanging updates
with hundreds or thousands of friends simultaneously. For business
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users, it might mean crunching through real-time and historical
data simultaneously to derive insight on critical business decisions.

Architectural Principles of Modern In-Memory
Databases
To tackle today’s workloads and anticipate the needs of the future,
modern in-memory databases adopt a set of architectural principles
that distinctly separate them from traditional databases. These first
principles include:

In-memory
Including the ability to accept transactions directly into
memory

Distributed
Such that additional CPU horsepower and memory can be
easily added to a cluster

Relational and multimodel
Relational to support interactive analytics, but also formats to
support semi-structured data

Mixed media
Specifically the ability to use multiple types of storage media
types such as integrated disk or flash for longer term storage

In-Memory
Memory, specifically RAM, provides speed levels hundreds of times
faster than typical solid state drives with flash, and thousands of
times faster than rotating disk drives made with magnetic media. As
such, RAM is likely to retain a sweet spot for in-memory processing
as a primary media type. That does not preclude incorporating com‐
binations of RAM and flash and disk, as discussed later in this
section.

But there are multiple ways to deploy RAM for in-memory databa‐
ses, providing different levels of flexibility. In-memory approaches
generally fit into three categories: memory after, memory only, and
memory optimized (Figure 2-1). In these approaches we delineate
where the database stores active data in its primary format. Note

10 | Chapter 2: First Principles of Modern In-Memory Databases



that this is different from logging data to disk, which is used for data
protection and recovery systems and represents a separate process.

Figure 2-1. Differing types of in-memory approaches

Memory after
Memory-after architectures typically retain the legacy path of com‐
mitting transactions directly to disk, then quickly staging them
“after” to memory. This approach provides speed after the fact, but
does not account for rapid ingest.

Memory only
A memory-only approach exclusively uses memory, and provides
no native capability to incorporate other media types such as flash
or disk. Memory-only databases provide performance for smaller
datasets, but fail to account for the large data volumes common in
today’s workloads and therefore provide limited functionality.

Memory optimized
Memory-optimized architectures allow for the capture of massive
ingest streams by committing transactions to memory first, then
persisting to flash or disk following. Of course, options exist to com‐
mit every transaction to persistent media. Memory-optimized
approaches allow all data to remain in RAM for maximum perfor‐
mance, but also for data to be stored on disk or flash where it makes
sense for a combination of high volumes and cost-effectiveness.

Architectural Principles of Modern In-Memory Databases | 11



Distributed Systems
Another first principle of modern in-memory databases is a dis‐
tributed architecture that scales performance and memory capacity
across a number of low-cost machines or cloud instances. As mem‐
ory can be a finite resource within a single server, the ability to
aggregate across servers removes this capacity limitation and pro‐
vides cost advantages for RAM adoption using commodity hard‐
ware. For example, a two-socket web server costs thousands of dol‐
lars, while a scale-up appliance could cost tens to hundreds of thou‐
sands of dollars.

Relational with Multimodel
For in-memory databases to reach broad adoption, they need to
support the most familiar data models. The relational data model, in
particular the Structured Query Language (SQL) model, dominates
the market for data workflows and analytics.

SQL
While many distributed solutions discarded SQL in their early days
—consider the entire NoSQL market—they are now implementing
SQL as a layer for analytics. In essence, they are reimplementing fea‐
tures that have existed in relational databases for many years.

A native SQL implementation will also support full transactional
SQL including inserts, updates, and deletes, which makes it easy to
build applications. SQL is the universal language for interfacing with
common business intelligence tools.

Other models
As universal as SQL may be, there are times when it helps to have
other models (Figure 2-2). JavaScript Object Notation (JSON) sup‐
ports semi-structured data. Another relevant data type is geospatial,
an essential part of the mobile world as today every data point has a
location.

Completing the picture for additional data models is Spark, a popu‐
lar data processing framework that incorporates a set of rich pro‐
gramming libraries. In-memory databases that extend to and incor‐
porate Spark can provide immediate access to this functionality.
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Since Spark itself does not include a persistence layer, in-memory
databases that provide a high-throughput, parallel connector
become a powerful persistent complement to Spark. Spark is
explored in more detail in Chapter 5.

Figure 2-2. A multimodel in-memory database

Mixed Media
Understandably, not every piece of data requires in-memory place‐
ment forever. As data ages, retention still matters, but there is typi‐
cally a higher tolerance to wait a bit longer for results. Therefore it
makes sense for any in-memory database architecture to natively
incorporate alternate media types like disk or flash.

One method to incorporate disk or flash with in-memory databases
is through columnar storage formats. Disk-based data warehousing
solutions typically deploy column-based formats and these can also
be integrated with in-memory database solutions.

Conclusion
As with choices in the overall database market, in-memory solutions
span a wide range of offerings with a common theme of memory as
a vehicle for speed and agility. However, an in-memory approach is
fundamentally different from a traditional disk-based approach and
requires a fresh look at longstanding challenges.

Powerful solutions will not only deliver maximum scale and perfor‐
mance, but will retain enterprise approaches such as SQL and rela‐
tional architectures, support application friendliness with flexible
schemas, and facilitate integration into the vibrant data ecosystem.

Conclusion | 13





CHAPTER 3

Moving from Data Silos to
Real-Time Data Pipelines

Providing a modern user experience at scale requires a streamlined
data processing infrastructure. Users expect tailored content, short
load times, and information to always be up-to-date. Framing busi‐
ness operations with these same guiding principles can improve
their effectiveness. For example, publishers, advertisers, and retailers
can drive higher conversion by targeting display media and recom‐
mendations based on users’ history and demographic information.
Applications like real-time personalization create problems for leg‐
acy data processing systems with separate operational and analytical
data silos.

The Enterprise Architecture Gap
A traditional data architecture uses an OLTP-optimized database for
operational data processing and a separate OLAP-optimized data
warehouse for business intelligence and other analytics. In practice,
these systems are often very different from one another and likely
come from different vendors. Transferring data between systems
requires ETL (extract, transform, load) (Figure 3-1).

Legacy operational databases and data warehouses ingest data differ‐
ently. In particular, legacy data warehouses cannot efficiently handle
one-off inserts and updates. Instead, data must be organized into
large batches and loaded all at once. Generally, due to batch size and
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rate of loading, this is not an online operation and runs overnight or
at the end of the week. 

Figure 3-1. Legacy data processing model

The challenge with this approach is that fresh, real-time data does
not make it to the analytical database until a batch load runs. Sup‐
pose you wanted to build a system for optimizing display advertis‐
ing performance by selecting ads that have performed well recently.
This application has a transactional component, recording the
impression and charging the advertiser for the impression, and an
analytical component, running a query that selects possible ads to
show to a user and then ordering by some conversion metric over
the past x minutes or hours.

In a legacy system with data silos, users can only analyze ad impres‐
sions that have been loaded into the data warehouse. Moreover,
many data warehouses are not designed around the low latency
requirements of a real-time application. They are meant more for
business analysts to query interactively, rather than computing pro‐
grammatically generated queries in the time it takes a web page to
load.

On the other side, the OLTP database should be able to handle the
transactional component, but, depending on the load on the data‐
base, probably will not be able to execute the analytical queries
simultaneously. Legacy OLTP databases, especially those that use
disk as the primary storage medium, are not designed for and gen‐
erally cannot handle mixed OLTP/OLAP workloads.

This example of real-time display ad optimization demonstrates the
fundamental flaw in the legacy data processing model. Both the
transactional and analytical components of the application must
complete in the time it takes the page to load and, ideally, take into
account the most recent data. As long as data remains siloed, this
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will be very challenging. Instead of silos, modern applications
require real-time data pipelines in which even the most recent data
is always available for low-latency analytics.

Real-Time Pipelines and Converged Processing
Real-time data pipelines can be implemented in many ways and it
will look different for every business. However, there are a few fun‐
damental principles that must be followed:

1. Data must be processed and transformed “on the fly” so that,
when it reaches a persistent data store, it is immediately avail‐
able for query.

2. The operational data store must be able to run analytics with
low latency.

3. Converge the system of record with the system of insight.

On the second point, note that the operational data store need not
replace the full functionality of a data warehouse—this may happen,
but is not required. However, to enable use cases like the real-time
display ad optimization example, it needs to be able to execute more
complex queries than traditional OLTP lookups.

One example of a common real-time pipeline configuration is to use
Kafka, Spark Streaming, and MemSQL together.

At a high level, Kafka, a message broker, functions as a centralized
location for Spark to read from disparate data streams. Spark acts a
transformation layer, processing and enriching data in micro
batches. MemSQL serves as the persistent data store, ingesting pro‐
cessed data from Spark. The advantage of using MemSQL for persis‐
tence is twofold:

1. With its in-memory storage, distributed architecture, and
modern data structures, MemSQL enables concurrent transac‐
tional and analytical processing.

2. MemSQL has a SQL interface and the analytical query surface
area to support business intelligence.

Because data travels from one end of the pipeline to the other in sec‐
onds, analysts have access to the most recent data. Moreover, the
pipeline, and MemSQL in particular, enable use cases like real-time
display ad optimization. Impression data is queued in Kafka, pre‐
processed in Spark, then stored and analyzed in MemSQL. As a
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transactional system, MemSQL can process business transactions
(charging advertisers and crediting publishers, for instance) in addi‐
tion to powering and optimizing the ad platform.

In addition to enabling new applications, and with them new top-
line revenue, this kind of pipeline can improve the bottom line as
well. Using fewer, more powerful systems can dramatically reduce
your hardware footprint and maintenance overhead. Moreover,
building a real-time data pipeline can simplify data infrastructure.
Instead of managing and attempting to synchronize many different
systems, there is a single unified pipeline. This model is conceptu‐
ally simpler and reduces connection points.

Stream Processing, with Context
Stream processing technology has improved dramatically with the
rise of memory-optimized data processing tools. While leading
stream processing systems provide some analytics capabilities, these
systems, on their own, do not constitute a full pipeline. Stream pro‐
cessing tools are intended to be temporary data stores, ingesting and
holding only an hour’s or day’s worth of data at a time. If the system
provides a query interface, it only gives access to this window of
data and does not give the ability to analyze the data in a broader
historical context. In addition, if you don’t know exactly what you’re
looking for, it can be difficult to extract value from streaming data.
With a pure stream processing system, there is only one chance to
analyze data as it flies by (see Figure 3-2).

Figure 3-2. Availability of data in stream processing engine versus
database
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To provide access to real-time and historical data in a single system,
some businesses employ distributed, high-throughput NoSQL data
stores for “complex event processing” (CEP). These data stores can
ingest streaming data and provide some query functionality. How‐
ever, NoSQL stores provide limited analytic functionality, omitting
common RDBMS features like joins, which give a user the ability to
combine information from multiple tables. To execute even basic
business intelligence queries, data must be transferred to another
system with greater query surface area.

The NoSQL CEP approach presents another challenge in that it
trades speed for data structure. Ingesting data as is, without a
schema, makes querying the data and extracting value from it much
harder. A more sophisticated approach is to structure data before it
lands in a persistent data store. By the time data reaches the end of
the pipeline, it is already in a queryable format.

Conclusion
There is more to the notion of a real-time data pipeline than “what
we had before but faster.” Rather, the shift from data silos to pipe‐
lines represents a shift in thinking about business opportunities.
More than just being faster, a real-time data pipeline eliminates the
distinction between real-time and historical data, such that analytics
can inform business operations in real time.
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CHAPTER 4

Processing Transactions and
Analytics in a Single Database

The thought of running transactions and analytics in a single data‐
base is not completely new, but until recently, limitations in technol‐
ogy and legacy infrastructure have stalled adoption. Now, innova‐
tions in database architecture and in-memory computing have made
running transactions and analytics in a single database a reality. 

Requirements for Converged Processing
Converging transactions and analytics in a single database requires
technology advances that traditional database management systems
and NoSQL databases are not capable of supporting. To enable con‐
verged processing, the following features must be met.

In-Memory Storage
Storing data in memory allows reads and writes to occur orders of
magnitude faster than on disk. This is especially valuable for run‐
ning concurrent transactional and analytical workloads, as it allevi‐
ates bottlenecks caused by disk contention. In-memory operation is
necessary for converged processing as no purely disk-based system
will be able to deliver the input/output (I/O) required with any rea‐
sonable amount of hardware.
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Access to Real-Time and Historical Data
In addition to speed, converged processing requires the ability to
compare real-time data to statistical models and aggregations of his‐
torical data. To do so, a database must be designed to facilitate two
kinds of workloads: (1) high-throughput operational and (2) fast
analytical queries. With two powerful storage engines, real-time and
historical data can be converged into one database platform and
made available through a single interface.

Compiled Query Execution Plans
Without disk I/O, queries execute so quickly that dynamic SQL
interpretation can become a bottleneck. This can be addressed by
taking SQL statements and generating a compiled query execution
plan. Compiled query plans are core to sustaining performance
advantages for converged workloads. To tackle this, some databases
will use a caching layer on top of their RDBMS. Although sufficient
for immutable datasets, this approach runs into cache invalidation
issues against a rapidly changing dataset, and ultimately results in
little, if any, performance benefit. Executing a query directly in
memory is a better approach, as it maintains query performance,
even when data is frequently updated (Figure 4-1).

Figure 4-1. Compiled query execution plans

Granular Concurrency Control 
Reaching the throughput necessary to run transactions and analytics
in a single database can be achieved with lock-free data structures
and multiversion concurrency control (MVCC). This allows the
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database to avoid locking on both reads and writes, enabling data to
be accessed simultaneously. MVCC is especially critical during
heavy write workloads such as loading streaming data, where
incoming data is continuous and constantly changing (Figure 4-2).

Figure 4-2. Lock-free data structures

Fault Tolerance and ACID Compliance
Fault tolerance and ACID compliance are prerequisites for any con‐
verged data processing systems, as operational data stores cannot
lose data. To ensure data is never lost, a database should include
redundancy in the cluster and cross-datacenter replication for disas‐
ter recovery. Writing database logs and complete snapshots to disk
can also be used to ensure data integrity.

Benefits of Converged Processing
Many organizations are turning to in-memory computing for the
ability to run transactions and analytics in a single database of
record. For data-centric organizations, this optimized way of pro‐
cessing data results in new sources of revenue and a simplified com‐
puting structure that reduces costs and administrative overhead.

Enabling New Sources of Revenue
Many databases promise to speed up applications and analytics.
However, there is a fundamental difference between simply speeding
up existing business infrastructure and actually opening up new
channels of revenue. True “real-time analytics” does not simply
mean faster response times, but analytics that capture the value of
data before it reaches a specified time threshold, usually some frac‐
tion of a second.

An example of this can be illustrated in financial services, where
investors must be able to respond to market volatility in an instant.
Any delay is money out of their pockets. Taking a single-database
approach makes it possible for these organizations to respond to
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fluctuating market conditions as they happen, providing more value
to investors.

Reducing Administrative and Development Overhead
By converging transactions and analytics, data no longer needs to
move from an operational database to a siloed data warehouse or
data mart to run analytics. This gives data analysts and administra‐
tors more time to concentrate efforts on business strategy, as ETL
often takes hours, and in some cases longer, to complete.

Simplifying Infrastructure
By serving as a database of record and analytical warehouse, a
hybrid database can significantly simplify an organization’s data pro‐
cessing infrastructure by functioning as the source of day-to-day
operational workloads.

There are many advantages to maintaining a simple computing
infrastructure:

Increased uptime
A simple infrastructure has fewer potential points of failure,
resulting in fewer component failures and easier problem diag‐
nosis.

Reduced latency
There is no way to avoid latency when transferring data between
data stores. Data transfer necessitates ETL, which is time con‐
suming and introduces opportunities for error. The simplified
computing structure of a converged processing database fore‐
goes the entire ETL process.

Synchronization
With a hybrid database architecture, drill-down from analytic
aggregates always points to the most recent application data.
Contrast that to traditional database architectures where analyt‐
ical and transactional data is siloed. This requires a cumber‐
some synchronization process and an increased likelihood that
the “analytics copy” of data will be stale, providing a false repre‐
sentation of data.
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Copies of data
In a converged processing system, the need to create multiple
copies of the same data is eliminated, or at the very least
reduced. Compared to traditional data processing systems,
where copies of data must be managed and monitored for con‐
sistency, a single system architecture reduces inaccuracies and
timing differences associated with data duplication.

Faster development cycles
Developers work faster when they can build on fewer, more ver‐
satile tools. Different data stores likely have different query lan‐
guages, forcing developers to spend hours familiarizing them‐
selves with the separate systems. When they also have different
storage formats, developers must spend time writing ETL tools,
connectors, and synchronization mechanisms.

Conclusion
Many innovative organizations are already proving that access to
real-time analytics, and the ability to power applications with real-
time data, brings a substantial competitive advantage to the table.
For businesses to support emerging trends like the Internet of
Things and the high expectations of users, they will have to operate
in real time. To do so, they will turn to converged data processing, as
it offers the ability to forego ETL and simplify database architecture.
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CHAPTER 5

Spark

Background
Apache Spark is an open source cluster computing framework origi‐
nally developed at UC Berkeley in the AMPLab. Spark is a fast and
flexible alternative to both stream and batch processing systems like
Storm and MapReduce, and can be integrated as a part of batch pro‐
cessing, stream processing, machine learning, and more. A recent
survey of 2,100 developers revealed that 82% would choose Spark to
replace MapReduce.

Characteristics of Spark 
Spark is a versatile distributed data processing engine, providing a
rich language for data scientists to explore data. It comes with an
ever-growing suite of libraries for analytics and stream processing.

Spark Core consists of a programming interface and a distributed
execution environment. On top of this core platform, the Spark
developer community has built several libraries including Spark
Streaming, MLlib (for machine learning), Spark SQL, and GraphX
(for graph analytics) (Figure 5-1). As of version 1.3, Spark SQL was
repackaged as the DataFrame API. Beyond acting as a SQL server,
the DataFrame API is meant to provide a general purpose library for
manipulating structured data.
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Figure 5-1. Spark data processing framework

The Spark execution engine keeps data in memory and has the abil‐
ity to schedule jobs distributed over many nodes. Integrating Spark
with other in-memory systems, like an in-memory database, facili‐
tates efficient and quick operations.

By design, Spark is stateless—there is no persistent data storage. As
such, Spark relies on other systems for serving, storing, and tracking
changes to data. Spark can be used with a variety of external storage
options including, most commonly, databases and filesystems. Dif‐
ferent external data stores suit different use cases.

Understanding Databases and Spark 
A common point of confusion is the relationship between Spark and
databases. While there is some overlapping functionality, there are
fundamental differences in design and functionality that distinguish
the two. The most significant difference has already been men‐
tioned: Spark is not a persistent data store.

Table 5-1 illustrates the similarities and differences between Spark
and a relational database.

Table 5-1. Comparison between Spark and a relational database

 Relational database Spark

Programming language SQL Scala and libraries

Execution environment SQL engine, query optimizer Distributed job scheduler

Persistent data storage Yes Relies on external databases and/or file
systems

Data mutability Transactional INSERT, UPDATE,
DELETE

Datasets are immutable
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Augmenting Spark with a real-time operational database opens a
wide array of new use cases. With this setup, Spark can access live
production data, and result sets from Spark can immediately be put
to use in the database to support mission-critical applications. Pair‐
ing Spark with a real-time database enables companies to go from a
static view to a dynamic view of operational metrics.

Spark’s distributed, in-memory execution environment is one of its
core innovations. In-memory data processing eliminates the disk
I/O bottleneck, and the distributed architecture reduces CPU con‐
tention by enabling parallelized execution. Using Spark with a disk-
optimized or single server database offsets the benefits of the Spark
architecture (Figure 5-2).

Figure 5-2. High throughput connectivity between an in-memory data‐
base and Spark

Other Use Cases
There are additional use cases for Spark beyond real-time stream‐
ing, for example, advanced analytics of operational data. Data scien‐
tists are often hindered by a lengthy and complex ETL process that
limits instant access to fresh data. When Spark is connected to an
operational database, fresh data can be loaded in Spark for analysis,
then a simple write returns the results to the database, providing
immediate query access to valuable real-time data.

Combining Spark with an operational database also enables busi‐
nesses to go to production and iterate faster than ever by taking the
results produced in Spark and putting them to immediate use.

Conclusion
Spark is an exciting technology that is changing the way businesses
process and analyze data. More broadly, it reflects the trend toward
scale-out, memory-optimized data processing systems. With use
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cases ranging from stream processing to machine learning, Spark
also exemplifies the benefits of versatile, multipurpose infrastruc‐
ture.
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CHAPTER 6

Architecting Multipurpose
Infrastructure

As data processing technology has matured, enterprise developers
and architects have realized that one of the keys to scaling effectively
is minimizing complexity. In the interest of limiting complexity, the
trend in enterprise data architecture is moving toward using fewer,
more versatile systems, rather than many narrow-purpose systems.
In addition to complexity, adding systems requires more adminis‐
tration, hiring developers and administrators with more specialized
skillsets, and more development work to glue all of the systems
together.

The rise of NoSQL grew out of limitations in legacy RDBMS tech‐
nology, specifically the lack of scalability and inability to handle
semi-structured data. Suppose you’re an AdTech company and you
manage your business operations, like keeping track of funds avail‐
able in active campaigns, in a relational database, but track click‐
stream data, whether or not a user clicked on an ad, in a NoSQL
key-value store or document store.

Now suppose you want to analyze the effectiveness of a given cam‐
paign. In order to correlate dollars spent with conversions, you need
to synthesize data coming from two different sources. This requires
an additional aggregation layer, probably in your application. In
addition to adding latency due to data transfer, this architecture
requires writing a custom aggregation layer and, potentially, addi‐
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tional custom code for synchronizing data between the separate
stores.

While introducing additional specialized systems may solve prob‐
lems in the short run, over time the cost of complexity adds up. This
chapter will cover trends in modern data processing systems that
allow greater flexibility and more streamlined infrastructure. Topics
include:

• “Multimodal” systems, which support more than one type of
workload (such as OLTP and OLAP)

• “Multimodel” systems, which support more than one kind of
logical data model

• Systems with tiered storage, enabling convergence of real-time
and historical data

Even as data processing technology grows more powerful and versa‐
tile, this does not mean there is one single system that can or should
be used for every data processing task. 

Multimodal Systems
“Multimodal” refers to a system with multiple modes of operation.
Commonly this refers to databases that support OLTP and OLAP
workloads, but it could also include stream processing or complex
event processing. The OLTP/OLAP example is the best understood
and most represented in the market, and is discussed in greater
depth in Chapter 4.

One point to consider when evaluating multimodal systems is
whether the system can operate in both modes simultaneously. For
instance, many databases both support transaction processing and
offer analytic query functionality. However, their concurrency
model effectively prevents the database from doing both simultane‐
ously.

Multimodel Systems
“Multimodel” refers to a system that supports multiple data models.
A data model specifies how data is logically organized and generally
affects how data is serialized, stored, and queried. For example, most
developers are familiar with the relational model, which represents
data as keyed tuples (rows) of typed attributes (columns). Tuples are

32 | Chapter 6: Architecting Multipurpose Infrastructure



organized into groups called relations (tables). Other common data
models include object relational, key-value, document, geospatial,
and graph.

Different data models suit different types of data, depending on fac‐
tors like attribute density, the availability of metadata like attribute
types, and what you want to do with the data after collection. For
example, business operations data, like sales or orders, generally fits
well in a relational schema. All records will have the same “shape”
since, for example, all sales occur at some time, for some price,
between some buyer and some seller, and so forth.

In contrast, there are fewer guarantees about the structure of records
for certain kinds of event processing. Suppose you’re logging video
playback information. Conceptually, it makes sense for each record
to represent a session of the user watching a video. However, the
attributes associated with sessions will likely be more varied than the
sales example. Some users will pause the video, others will watch it
straight through. Some users will experience video quality degrada‐
tion, or may change the video resolution part way through. Record‐
ing a value for every possible session attribute, which would be nec‐
essary in a standard relational schema, will likely result in storing
lots of NULLs.

This is why using multiple data stores with different data models
may seem appealing. However, in many cases a preferable solution is
to use a single data store that supports multiple data models. For
example, some modern relational databases support a JSON data
type. Document-oriented NoSQL databases commonly use JSON as
a data format because it lends itself to representing semi-structured
data. There is no enforced schema and it supports nested types.

Including a JSON type within a relational database allows users to
store and query structured and semi-structured data together.
Instead of building an additional processing layer for combining
data from separate data store, users can query data in multiple for‐
mats with a single query (Figure 6-1).
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Figure 6-1. In this example, click_stream is a JSON column

A query that touches both structured and semi-structured data may
look something like this:

SELECT * FROM accounts WHERE click_stream::%is_active AND 
JSON_LENGTH(click_stream::clicked) > 1;

Tiered Storage
Increasingly, modern data stores support multiple storage media,
including DRAM (main memory), flash, and spinning disk. DRAM
has established itself as the medium of choice for fast read and write
access, especially for OLTP workloads. However, despite drops in
the price of memory in recent years, it is not feasible for most com‐
panies to store very large datasets totally in DRAM.

To address this common concern, some modern data stores offer
multiple storage options spread across different media, as in
Figure 6-2. For example, some databases allow the user to transpar‐
ently specify which data resides in memory or on disk on a per-table
basis. Other databases support multiple storage media, but do not
transparently expose those options to the user.

Note that storing some data in memory and some on flash or disk is
not necessarily the same as tiered storage. For instance, some ven‐
dors have added in-memory analytical caches on top of their exist‐
ing disk-based offering. An in-memory analytical cache can acceler‐
ate query execution, but does not provide true storage tiering since
the in-memory copy of data is redundant.
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Figure 6-2. Converging real-time and historical data

The Real-Time Trinity: Apache Kafka, Spark,
and an Operational Database 
One of the most popular use cases for Spark is real-time stream and
event processing. For example, the data science team at Pinterest
uses Apache Kafka, Spark Streaming, and MemSQL, a combination
that has been dubbed the “Real-Time Trinity,” to ingest tens of thou‐
sands of events per second and aggregate that event data, which in
this case is pins and repins (Figure 6-3). Kafka serves as the message
queue, Spark provides the transformation tier, and the operational
database offers data persistence and a serving layer for an applica‐
tion that allows for quick analysis of real-time trending topics by
geography.

Figure 6-3. High-throughput real-time pipeline
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Another example of the Real-Time Trinity is MemCity, a smart
energy collection showcase. MemCity tracks, processes, and ana‐
lyzes data from various energy devices that can be found in homes,
measured by the minute in real time. It is built with the same archi‐
tecture that Pinterest leverages: Kafka, Spark, and an operational
database, to solve the problem of how to ingest, process, and serve
real-time data across an organization.

In this case, Spark is used to transform and enrich data read from
Kafka with geolocation information and energy device type infor‐
mation. The end result of this transformation is data served in an
operational database to power live energy consumption dashboards.
An image of the MemCity reporting dashboard generated by
Tableau is shown in Figure 6-4. For organizations trying to plan for
smart cities and sustainable energy consumption, this simulation
highlights the importance of understanding data through real-time
big data analytics.

Figure 6-4. MemCity reporting dashboard generated by Tableau

Conclusion
In data processing infrastructure, simplicity and efficiency go hand
in hand. Every system in a pipeline adds connection points, data
transfer, and different data formats and APIs. While there is no sin‐
gle system that can manage all data processing needs for a modern
enterprise, it is important to select versatile tools that allow a busi‐
ness to limit infrastructure complexity and to build efficient, resil‐
ient data pipelines.
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CHAPTER 7

Getting to Operational Systems

Operational systems are at times mistakenly conflated with online
transaction processing (OLTP) systems. They are in fact not the
same. While operational systems process day-to-day transactions
similarly to OLTP systems, they can also perform batch processing
similarly to online analytical processing (OLAP) systems. An opera‐
tional system is the system that processes daily transactions, but its
use does not end there. The appropriate operational system for your
enterprise can also enable real-time analysis, reporting, and decision
making.

Getting to that ideal operational system requires choosing the
appropriate technological components. Modern technology avail‐
able today makes the choice simpler. It is important to consider sev‐
eral guiding principles.

Have Fewer Systems Doing More 
There are two schools of thought here around this subject—“best of
breed” and “consolidation.” You will typically hear various vendors
speak differently about both these approaches.

With the “best of breed” approach, you can add or remove compo‐
nents to or from your system, and ensure that only the “best” soft‐
ware for each of your needs are in your architecture. This example
works well in theory, and promises that you will always have the best
software for all your use cases without getting locked into one ven‐
dor. The reality is that in many cases the “best of breed” software
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solution for one usage scenario does not integrate well with the “best
of breed” solution for your other usage scenarios. Their APIs don’t
play nicely together, their data models are very different, or they
have vastly different interfaces such that you have to train your
organization multiple times to use the system. The “best of breed”
approach is also not maintainable over time unless you have strictly
defined interfaces between your systems. Many companies end up
resorting to middleware solutions to integrate the sea of disparate
systems, effectively adding another piece of software on top of their
growing array of solutions.

The other way companies think about operational systems is “con‐
solidation.” With this approach, you choose the least amount of soft‐
ware solutions that maximize the use cases covered. The “best of
breed” school would argue that this causes vendor lock-in and over‐
reliance on one solution that may become more expensive over
time. That said, that argument really only works on software solu‐
tions that have proprietary interfaces that are not transferrable to
other systems. A counterexample for this is a SQL-based relational
database using freely available client drivers. Enterprises should
choose solutions that use interfaces where knowledge about their
usage is generally available and widely applicable, and that can han‐
dle a vast amount of use cases. Consolidating your enterprise
around systems such as these reduces vendor lock-in, allows you to
use fewer systems to do more things, and makes maintenance over
time much easier than the best of breed alternative. This is not to say
that the ideal enterprise architecture would be to use only one sys‐
tem; that is unrealistic. Enterprises should, however, seek to consoli‐
date software solutions when appropriate. 

Modern Technologies Enable Real-Time
Programmatic Decision Making
Until recently, limitations in database technology forced developers
to separate transaction processing and analytical data processing,
both physically and conceptually. The “online” in online analytical
processing (OLAP) refers to queries executing at interactive speed.
However, the data itself remains largely static, except for period
batch updates, which usually happen at off-peak hours (overnight,
for example). The result is that operations and analytics are decou‐
pled.
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Converging operational and analytical data processing not only cre‐
ates tighter reporting feedback loops, but allows applications to pro‐
grammatically use the results of real-time analysis. To illustrate the
building of a modern operational system that handles the HTAP use
case, let’s consider the example of an ad serving platform.

The purpose of an ad serving platform is to optimize user engage‐
ment with display advertising. A common implementation is shown
on the lefthand side of Figure 7-1.

Figure 7-1. Ad serving platform architecture example: (a) traditional
enterprise architecture and (b) modern enterprise architecture

Legacy enterprise architectures have two systems for data storage—
an operational database and a non-real-time data warehouse. The
operational database powers the platform, tracking impressions and
clicks, as well as campaign targets and budgets. Adding analytics
capabilities to the operational database, without blocking transac‐
tional throughput, enables more sophisticated targeting and optimi‐
zation.

Consider an advertising platform that, in addition to using targeting
algorithms, can analyze recent ad and campaign performance. For
example, the platform may use a targeting algorithm to choose a set
of possible ads to show, then run another query to determine how
each of those possible ads have been performing recently, and
choose one that has achieved a high conversion rate.

This application of real-time analytics is programmatic in that the
platform acts autonomously, without input from a human, leverag‐
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ing recent data to drive higher engagement. This kind of optimiza‐
tion is conceptually simple—using a relational database, the applica‐
tion can execute a query that orders results by some conversion
metric. However, this would not be possible in a legacy system
where operational data processing and analytics are separated by an
offline ETL job and are siloed in separate data stores.

With a legacy system, the best case scenario is that an analyst notices
that some ads are performing better and updates the targeting
model, and the updated model is deployed to production days or
even weeks later. In the interim, the ad serving platform continues
selecting ads without preference for higher conversion rate. In con‐
trast, a modern system that incorporates analytics into the serving
process programmatically optimizes campaigns immediately, and
drives better engagement, which means more revenue.

The ability to programmatically leverage real-time analytics has
many applications within and beyond the digital advertising space.
For instance, it could be used to optimize a financial trading plat‐
form by tracking real-time changes in pricing, or to manage a ship‐
ping network using real-time traffic information.

A proper database that can serve as both a real-time database and
data warehouse should satisfy the following use cases, which usually
translate to certain database features, as summarized in Table 7-1
below.

Table 7-1. Characteristics of databases that can serve as both a real-time
database and data warehouse

Characteristic Database feature

The database must handle high amounts of
traffic.

Ability to scale out on commodity hardware,
allowing massive parallelism of database
transactions.

Data serving must happen in real time. Database must have an in-memory component for
maximum performance.

The database must hold both real-time and
historical data.

Database should have a disk-based component that
allows storage of large amounts of data.

The database should handle both simple
and complex queries for programmatic
analysis

Database should have a robust programmatic
interface such as SQL.

Data analysis must not block or slow down
data ingest.

Database readers must not block writers (and vice
versa), while maintaining transactional consistency.
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Modern Technologies Enable Ad-Hoc
Reporting on Live Data
It is commonly thought that generating reports on a large data set
always requires a preprocessing stage in another system for faster
ad-hoc querying. Ad-hoc querying is defined as running queries
individually on demand to derive insight on the current state of the
system. The alternative to ad-hoc queries would be running queries
repeatedly as part of a software application. Those queries are typi‐
cally more performant, as both the underlying database system and
query itself are properly optimized before being run.

This preprocessing stage for ad-hoc queries typically begins with a
batch job moving data into another system, followed by several pre‐
processing steps for the data in the other system that aggregate the
data or modify its representation (e.g., row store to column store
conversion).

With modern systems, the need for standing up a separate system
specifically for ad-hoc queries is no longer necessary.

To illustrate the building of a modern operational system that allows
ad-hoc reporting without requiring a separate system, let’s consider
an Internet of Things (IoT) use case that will likely be increasingly
common in a few years—a “smart city” (Figure 7-2). A smart city
application measures and maps electric consumption across all
households in a city. It tracks, processes, and analyzes data from var‐
ious energy devices that can be found in homes, measured in real
time. 

Figure 7-2. Smart city application architecture example: (a) traditional
enterprise architecture and (b) modern enterprise architecture
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As shown on the left side of Figure 7-2, smart city applications built
with a traditional architecture would typically have a data process‐
ing system that can ingest large amounts of geotagged household
data, a data persistence system that can reliably persist the volume of
incoming data, and a data analysis system from which ad-hoc quer‐
ies and reports can be built.

As shown on the right side of Figure 7-2, modern architectures do
not rely on separate data persistence and data analysis systems.
Instead, they allow ad-hoc queries to be run against the same system
that provides the data persistence tier. As such, reliance on batch
jobs to move data into a separate tier for reporting is unnecessary. 

Conclusion
Modern technology makes it possible for enterprises to build the
ideal operational system. To develop an optimally architected opera‐
tional system, enterprises should look to use fewer systems doing
more, to use systems that allow programmatic decision making on
both real-time and historical data, and use systems that allow fast
ad-hoc reporting on live data.
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CHAPTER 8

Data Persistence and Availability

Fundamental to any operational database is its ability to store infor‐
mation durably and be resilient to unexpected machine failures. In
more technical terms, an operational database must:

• Persist all its information to disk storage for durability.
• Ensure data is highly available by maintaining a readily available

second copy of all data, and automatically failover without
downtime in case of server crashes.

The previous chapters have been touting the ability of in-memory,
distributed, SQL-based (relational) databases to provide the fastest
performance for a wide amount of use cases, but the data persistence
question always arises:

If the database is “in-memory,” what guarantees are there that the
data will be fully persistent and always available?

This section will dive deep into the details of in-memory, dis‐
tributed, SQL relational database systems and how they can be
architected to guarantee data durability and high availability.
Figure 8-1 presents a high-level architecture that illustrates how an
in-memory database could provide these guarantees.
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Figure 8-1. In-memory database persistence and high availability

Data Durability
For data storage to be durable, it must survive in the event of a
server failure. After the server failure, the data should be recoverable
into a transactionally consistent state without any data loss or cor‐
ruption. In-memory databases guarantee this by periodically flush‐
ing snapshots of the in-memory store into a durable copy on disk,
maintaining transaction logs, and replaying the snapshot and trans‐
action logs upon server restart.

It is easier to understand data durability in an in-memory database
through a specific scenario. Suppose a database application inserts a
new record into a database. The following events will occur once a
commit is issued:

1. The inserted record will be written to the in-memory data store.
2. A log of the transaction will be stored in a transaction log buffer

in memory.
3. Once the transaction log buffer is filled, its contents are flushed

to disk.
a. The size of the transaction log buffer is configurable, so if it

is set to 0, the transaction log will be flushed to disk after
each committed transaction. This is also known as synchro‐
nous durability.

4. Periodically, full snapshots of the database are taken and written
to disk.
a. The number of snapshots to keep on disk, and the size of the

transaction log at which a snapshot is taken, are configura‐
ble. Reasonable defaults are typically set.
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Numerous settings to control the extent of data persistence are pro‐
vided to the user. A user can choose to configure the database to be
fully persisted to disk each time (synchronous durability), not be
durable at all, or anywhere in between. The proper choice comes
down to a trade-off between having a data loss window of zero and
optimal performance. In-memory database users in financial serv‐
ices—where data persistence is very important—typically configure
their systems closer to synchronous durability. On the other hand,
in-memory database users dealing with sensor or clickstream data—
where analytic speed is the priority—typically configure their sys‐
tems with a higher transaction buffer window. Users tend to find a
balance between the two by tuning the database levers appropriately.

Data Availability
Almost all the time, the requirements around data loss in a database
are not focused on the data remaining fully durable in a single
machine. The requirements are simply about the data remaining
available and up-to-date at all times in the system as a whole. In
other words, in a multimachine system, it is perfectly fine for data to
be lost in one of the machines, as long as the data is still persisted
somewhere in the system, and upon querying the data, it still
returns a transactionally consistent result. This is where high availa‐
bility comes in. For data to be highly available, it must be queryable
from a system despite failures from some of the machines in the
system.

It is easier to understand high availability through a specific sce‐
nario. In a distributed system, any number of machines in the sys‐
tem can fail. If a failure occurs, the following should happen:

1. The machine is marked as failed throughout the system.
2. A second copy of data in the failed machine, already existing in

another machine, is promoted to be the “master” copy of data.
3. The entire system fails over to the new “master’” data copy, thus

removing any system reliance on data present in the failed
system.

4. The system remains online (i.e., queryable) all throughout the
machine failure and data failover times.

5. If the failed machine recovers, the machine is integrated back
into the system.
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A distributed database system that guarantees high availability also
has mechanisms for maintaining at least two copies of the data in
different machines at all times. These copies must be fully in sync
while the database is online through proper database replication.
Distributed databases have settings for controlling network timeouts
and data window sizes for replication.

A distributed database system is also very robust. Failures of its dif‐
ferent components are mostly recoverable, and machines are auto-
added into the distributed database efficiently and without loss of
service or much degradation of performance.

Finally, distributed databases should also allow replication of data
across wide distances, typically to a disaster recovery center offsite.
This process is called cross datacenter replication, and is provided
by most in-memory, distributed, SQL databases.

Data Backups
In addition to providing data durability and high availability, data‐
bases also provide ways to manually or programmatically create
backups for the databases. Creating a backup is typically done by
issuing a command, which immediately creates on-disk copies of
the current state of the database. These database backups can then
be restored into an existing or new database instance in the future
for historical analysis or kept for long-term storage. 

Conclusion
Databases should always provide persistence and high availability
mechanisms for their data. Enterprises should only look at databases
that provide this functionality for their mission-critical systems. In-
memory SQL databases that are available today provide these guar‐
antees through mechanisms for data durability (snapshots, transac‐
tion logs), data availability (master/slave data copies, replication),
and data backups.
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CHAPTER 9

Choosing the Best
Deployment Option

As data-driven organizations move away from “big iron” appliances
to agile infrastructures that favor agility and flexibility to scale, IT
departments face multiple options to meet real-time demands. In
this chapter we will look at the deployment decisions to consider
across bare metal, virtual machines and containers, and the cloud, as
shown in Figure 9-1.

Figure 9-1. Flexible deployments for in-memory systems

Considerations for Bare Metal
Bare metal deployments provide the most direct access to the
underlying hardware thereby maximizing performance on a per
CPU or per GB of RAM basis. If new server purchases are required,
bare metal environments can have a larger upfront cost, but they
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provide more cost-effective operation in the long run if the dataset
and size remain relatively predictable.

Bare metal environments are mostly complemented by on-premises
deployments, and in some cases cloud providers offer bare metal
deployments.

Virtual Machine (VM) and Container
Considerations
When working with a dataset and workload that require the agility
and flexibility to scale as needed, virtual environments can be the
right choice. Virtual machines offer many benefits such as fast
server provisioning, fewer hardware restrictions, and easier migra‐
tion to the cloud.

Containers are another option; they offer many of the benefits of
virtual machines, but with a lighter approach since the operating
system is not reprovisioned in every container. The result is faster
and lighter weight deployments.

In some cases, companies might mandate the use of virtual
machines without an option to deploy a bare metal server. In these
cases, virtualization can still be deployed, but potentially with only
one VM per physical machine. This provides the flexibility of a vir‐
tual environment but minimizes virtualization overhead by limiting
each physical machine to one VM.

Orchestration Frameworks
With the recent proliferation of container-based solutions like
Docker, many companies are choosing orchestration frameworks
such as Mesos or Kubernetes to manage these deployments. Data‐
base architects seeking the most flexibility should evaluate these
options; they can help when deploying different systems simultane‐
ously that need to interact with each other, for example, a messaging
queue, a transformation tier, and an in-memory database.
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Considerations for Cloud or On-Premises
Deployments
The right solution between cloud or on-premises deployments
depends on several factors that may vary between companies and
applications.

Benefits of Cloud: Expansion and Flexibility
When it comes to flexibility and ability to scale, cloud infrastructure
has the advantage. Leveraging cloud deployments offers the ability
to quickly scale out during peak workloads when higher perfor‐
mance is required, and scale back as needed. Cloud deployments
also provide ease of expansion to new regions without the heavy
overhead.

Contrast that with an on-premises data center that requires develop‐
ers to account for peak workloads before they occur, leaving infra‐
structure investment underutilized during nonpeak times. 

Benefits of On-Premises: Control, Security, Performance
Optimization, and Predictability
While cloud computing offers easy startup costs and the ability to
scale, many companies still retain large portions of data infrastruc‐
ture on-premises for some of the following reasons.

Control
On-premises database systems provide the highest level of control
over data processing and performance. The physical systems are all
dedicated to their owner, as opposed to being shared on a cloud
infrastructure. This eliminates being relegated to a lowest common
denominator of performance and instead allows fine-tuned assign‐
ment of resources for performance-intensive applications.

Security
If your data is private or highly regulated, an on-premise database
infrastructure may be the most straightforward option. Financial
and government services and healthcare providers handle sensitive
customer data according to complex regulations that are often more
easily addressed in a dedicated on-site infrastructure.
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Performance optimization and predictability
With more control over hardware, it is easier to maximize perfor‐
mance for a particular workload. At the same time, performance on
premises is typically more predictable as it is not compromised by
shared servers.

One area in particular where on-premises deployments can provide
an advantage is networking. In a cloud environment, there is often
little choice for network options, whereas on-premises architectures
offer full control of the network environment.

Choosing the Right Storage Medium
Depending on data workload and use case, you will be faced with
various options for how data is stored. There will likely be some
combination of data being stored in memory and on SSD, and in
some cases on disk. 

RAM
When working with high-value, transactional data, RAM is the best
option. RAM is orders of magnitude faster than SSD, and enables
real-time processing and analytics on a changing dataset. For organ‐
izations with real-time data requirements, high-value data is kept in
memory for a specified period of time and later moved to disk for
historical analytics. 

SSD and Disk
Solid state disks and conventional magnetic disks can be used to
complement a RAM solution. To optimize for I/O, SSDs and disks
perform best on sequential operations, such as logging for a RAM-
based rowstore or storing data in a disk-based column store.

Deployment Conclusions
Perhaps the only certainty with computer systems is that things are
likely to change. As applications evolve and data requirements
expand, architects need to ensure that they can rapidly adopt.
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Before choosing an in-memory architecture, be sure that it offers
the flexibility to scale across a variety of deployment options. This
will mitigate the risks of a changing system and provide the simplest
means for continued operation.
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CHAPTER 10

Conclusion

In-memory optimized databases are filling the gap where legacy
relational database management systems and NoSQL databases have
failed to deliver. By implementing a hybrid data processing model,
organizations can obtain instant access to incoming data while gain‐
ing faster and more targeted insights. With the ability to process and
analyze data as it is being generated, data-driven businesses can
detect operational trends as they happen rather than reacting after
the fact.

Recommended Next Steps
Now is the time to begin exploring in-memory options. Organiza‐
tions with a focus on quickly deriving business value from emerging
and growing data sources should identify data processing and stor‐
age solutions with in-memory storage, compiled query execution,
enterprise-ready fault tolerance, and ACID compliance.

To get a competitive advantage from real-time data pipelines, we
recommend the following:

• Identify real-time use cases within your organization, prioritiz‐
ing by selecting processes that will either have the biggest reve‐
nue impact or that are easiest to implement.

• Investigate in-memory database solutions available in the mar‐
ket, giving preference to distributed systems that offer a mem‐
ory optimized architecture.
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• Explore leveraging open source frameworks such as Apache
Kafka and Apache Spark to streamline data pipelines and enrich
data for analysis.

• Select a vendor and run a proof of concept that puts your use
case(s) to the test.

• Go to production at a manageable scale to validate the value of
real-time analytics or applications.

There’s no getting around the fact that the world is moving towards
operating in real time. For your business, possessing the ability to
analyze and react to incoming data will give you an upper hand that
could be the difference between growth or stagnation. With technol‐
ogy advances such as in-memory computing and distributed sys‐
tems, it’s entirely possible to implement a cost-effective, high-
performance data processing model that enables your business to
operate at the pace and scale of incoming data. The question is, are
you up for the challenge?
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