
Ryan Knight
James Ward

​@TODO
​@_JamesWard

Modern Data Pipelines

Ryan Knight

Architect at Starbucks

• Distributed Systems guru

• Scala, Akka, Cassandra Expert & Trainer

• Skis with his 5 boys in Park City, UT

• First time to jFokus

James Ward

Developer at Salesforce

• Back-end Developer

• Creator of WebJars

• Blog: www.jamesward.com

• Not a JavaScript Fan

• In love with FP

​Code

​github.com/jamesward/koober

Agenda

• Modern Data Pipeline Overview

• Kafka

• Akka Streams

• Play Framework

• Flink

• Cassandra

• Spark Streaming

Modern Data Pipelines
Real-Time, Distributed, Decoupled

Why Streaming Pipelines
​ Real Time Value

• Allow business to react to data in real-time instead of batch

​ Real Time Intelligence
• Provide real-time information so that the apps can use the information

and adapt their user interactions

​ Distributed data processing that is both scalable and resilient

​ Clickstream analysis

​ Real-time anomaly detection

​ Instant (< 10 s) feedback - ex. real time concurrent video viewers / page
views

Data Pipeline Requirements

• Ability to process massive amounts of data

• Handle data from a wider variety of sources

• Highly Available

• Resilient - not just fault tolerant

• Distributed for Scale of Data and Transactions

• Elastic

• Uniformity - all-JVM based for easy deployment and management

Traditional ETL

Data Integration Today

Data Pipelines today

http://ferd.ca/queues-don-t-fix-overload.html

Backpressure

​ http://ferd.ca/queues-don-t-fix-overload.html

Data Hub / Stream Processing

Pipeline Architecture

Play App

Kafka
Spark

Streaming

Spark
core, streaming,
graphx, mllib, ...

Cassandra

Spark
Notebook

Web Client

Cold Data

Flink

Koober

github.com/jamesward/koober

Kafka
Distributed Commit Logs

What is Kafka?

​ Kafka is a distributed and partitioned commit log
​ Replacement for traditional message queues and publish subscribe

systems
​ Central Data Backbone or Hub
​ Designed to scale transparently with replication across the cluster

Core Principles

1. One pipeline to rule them all
2. Stream processing >> messaging
3. Clusters not servers
4. Pull Not Push

Kafka Characteristics

​ Scalability of a filesystem
• Hundreds of MB/sec/server throughput
• Many TB per server

​ Durable - Guarantees of a database
• Messages strictly ordered
• All data persistent

​ Distributed by default
• Replication
• Partitioning model

Kafka is about logs

The Event Log

​ Append-Only Logging

​ Database of Facts

​ Disks are Cheap

​ Why Delete Data any more?

​ Replay Events

Append Only Logging

Logs: pub/sub done right

Kafka Overview
• Producers write data to brokers.

• Consumers read data from brokers.

• Brokers - Each server running Kafka is called a
broker.

• All this is distributed.

• Data

– Data is stored in topics.

– Topics are split into partitions, which are
replicated.

• Built in Parallelism and Scale

http://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-apache-kafka-cluster-on-a-single-node/

Partitions

​ A topic consists of partitions.
​ Partition: ordered + immutable sequence of messages

that is continually appended to

Partition offsets

• Offset: messages in the partitions are each assigned a unique
(per partition) and sequential id called the offset
• Consumers track their pointers via (offset, partition, topic) tuples

Consumer group C1

Example:
A Fault-tolerant CEO Hash Table

Operations
Final State

Kafka Log

Heroku Kafka

• Managed Kafka Cloud Service
• https://www.heroku.com/kafka

Code

Akka Streams
Reactive Streams Built on Akka

Reactive Streams
​A JVM standard for asynchronous stream processing with non-blocking back pressure

Akka Streams

• Powered by Akka Actors

• Impl of Reactive Streams

• Actors can be used directly or just internally

• Stream processing functions: map, filter, fold, etc

Sink & Source

val source = Source.repeat("hello, world")
val sink = Sink.foreach(println)
val flow = source to sink
flow.run()

Code

Play Framework
Web Framework Built on Akka Streams

Play Framework

​Declarative Routing:

​GET /foo controllers.Foo.do

​Controllers Hold Stateless Functions:

​class Foo {

​ def do() = Action {

​ Ok("hello, world")

​ }

​}

​Scala & Java – Built on Akka Streams

Reactive Requests

​def doLater = Action.async {

​ Promise.timeout(Ok("hello, world"), 5.seconds)

​}

def reactiveRest = Action.async {

ws.url("http://api.foo.com/bar").get().map { response =>

Ok(response.json)

}

}

​Don't block in wait states!

WebSockets

​def ws = WebSocket.accept { request =>

​ val sink = ...

​ val source = ...

​ Flow.fromSinkAndSource(Sink.ignore, source)

​}

​Built on Akka Streams

Views

​app/views/blah.scala.html

​@(foo: String)

​<html>

​<body>

​ @foo

​</body>

​</html>

​Action {

​ Ok(views.html.blah("bar"))

​}

​<html>

​<body>

​ bar

​</body>

​</html>

​Serverside Templating with a Subset of Scala

Demo & Code

Flink
Real-time Data Analytics

Flink

• Bounded & Unbounded Data Sets

• Stream processing

• Distributed Core
• Fault Tolerant

• Clustered

• Flexible Windowing

​Real-time Data Analytics

Apache Flink
​Continuous Processing for Unbounded Datasets

λ

count() 5

Windowing
​Bounding with Time, Count, Session, or Data

λ

count() 21s 1s 3

Batch Processing
​Stream Processing on Finite Streams

λ

count() 4

Data Processing

• Aggregate / Accumulate

• Transform

• Filter

• Sort

​fold(), reduce(), sum(), min()

​map(), flatMap()

​filter(), distinct()

​sortGroup(), sortPartition()

​What can we do?

λ

Apache Flink
​Architecture

Partitioning
​Network Distribution

Demo & Code

Cassandra
Distributed NoSQL Database

Challenges with Relational Databases

• How do you scale and maintain high-availability with a
monolithic database?

• Is it possible to have ACID compliant distributed transactions?
• How can I synchronize a distributed data store?
• How do I resolve differing views of data?

56

Goals of a Distributed Database
• Consistency is not practical - give it up!
• Manual sharding & rebalancing is hard - Automatic

Sharding!
• Every moving part makes systems more complex
• Master / slave creates a Single Point of Failure / Bottleneck

- Simplify Architecture!
• Scaling up is expensive - Reduce Cost
• Leverage cloud / commodity hardware

Confidential

What is Cassandra?

Distributed Database

✓ Individual DBs (nodes)

✓ Working in a cluster

✓ Nothing is shared

C*

Confidential

Cassandra Cluster

• Nodes in a peer-to-peer cluster
• No single point of failure

• Built in data replication
• Data is always available
• 100% Uptime

• Across data centers
• Failure avoidance

Multi-Data Center Design

Confidential

Why Cassandra?
It has a flexible data model
Tables, wide rows, partitioned and distributed
✓ Data
✓ Blobs (documents, files, images)
✓ Collections (Sets, Lists, Maps)
✓ UDTs
Access it with CQL ← familiar syntax to SQL

Two knobs control Cassandra fault tolerance

​How many copies of the data should exist?

​Replication Factor (server side)

Client

B
AD

C
AB

A
CD

D
BC

Write	A

RF=3

Two knobs control Cassandra fault tolerance
​Consistency Level (client side)

Client

B
AD

C
AB

A
CD

D
BC

Write	A

CL=QUORUM

Client

B
AD

C
AB

A
CD

D
BC

Write	A

CL=ONE

How many replicas do we need to hear from before we acknowledge?

Consistency Levels

​ONE – one replica from any DC

​LOCAL_ONE – one replica from local DC

​QUORUM – 51% of replicas from any DC

​LOCAL_QUORUM – 51% of replicas from local DC

​ALL – all replicas

​TWO

​Applies to both Reads and Writes (i.e. is set on each query)

​How many replicas we need to hear from can affect
how quickly we can read and write data in
Cassandra?

Consistency Level and Speed

Client

B
AD

C
AB

A
CD

D
BC

5 µs ack

300 µs ack

12 µs ack
12 µs ack

Read	A
(CL=QUORUM)

​Consistency Level choice affects availability
Consistency Level and Availability

Client

B
AD

C
AB

A
CD

D
BC

A=2

A=2

A=2

Read	A
(CL=QUORUM)

For example, QUORUM can tolerate one replica being down
and still be available (in RF=3)

Reads in the cluster
​Same as writes in the cluster, reads are coordinated
​Any node can be the Coordinator Node

Client

B
AD

C
AB

A
CD

D
BC

Read	A
(CL=QUORUM)

Coordinator	Node

Spark Cassandra Connector

Spark Cassandra Connector

​ Data locality-aware (speed)

​ Read from and Write to Cassandra

​ Cassandra Tables Exposed as RDD and DataFrames

​ Server-Side filters (where clauses)

​ Cross-table operations (JOIN, UNION, etc.)

​ Mapping of Java Types to Cassandra Types

●70

Code

Spark Streaming
Stream Processing Built on Spark

Hadoop?

Hadoop Limitations

• Master / Slave Architecture
• Every Processing Step requires Disk IO
• Difficult API and Programming Model
• Designed for batch-mode jobs
• No even-streaming / real-time
• Complex Ecosystem

What is Spark?
​ Fast and general compute engine for large-scale data processing

​ Fault Tolerant Distributed Datasets

​ Distributed Transformation on Datasets

​ Integrated Batch, Iterative and Streaming Analysis

​ In Memory Storage with Spill-over to Disk

Advantages of Spark
• Improves efficiency through:
• In-memory data sharing
• General computation graphs - Lazy Evaluates Data
• 10x faster on disk, 100x faster in memory than Hadoop MR

• Improves usability through:
• Rich APIs in Java, Scala, Py..??
• 2 to 5x less code
• Interactive shell

Application
(Spark Driver)

Spark Master

Worker

Spark Components

You application code
which creates the SparkContext

A process which shells out to create
a Executor JVM

A Process which Manages the
Resources of the Spark Cluster

These processes are all separate and require networking
to communicate

Hosting
Application UI

:4040

Hosting
Spark Master UI

:7080

WorkerWorkerWorkerWorker

Resilient Distributed Datasets (RDD)

• The primary abstraction in Spark
• Collection of data stored in the Spark Cluster
• Fault-tolerant
• Enables parallel processing on data sets
• In-Memory or On-Disk

RDD Operations
Transformations - Similar to scala collections API
Produce new RDDs:
filter, flatmap, map, distinct, groupBy,
union, zip, reduceByKey, subtract

Actions - Require materialization of the records to generate a value
collect: Array[T], count, fold, reduce..

DataFrame
• Distributed collection of data

• Similar to a Table in a RDBMS

• Common API for reading/writing data

• API for selecting, filtering, aggregating
and plotting structured data

DataFrame Part 2
• Sources such as Cassandra, structured data files, tables in

Hive, external databases, or existing RDDs.

• Optimization and code generation through the Spark SQL
Catalyst optimizer

• Decorator around RDD - Previously SchemaRDD

Spark Versus Spark Streaming

Spark Streaming Data Sources

Spark Streaming General Architecture

DStream Micro Batches

Windowing

Windowing

Streaming Resiliency without Kafka

• Streaming uses aggressive checkpointing and in-memory data replication to improve

resiliency.

• Frequent checkpointing keeps RDD lineages down to a reasonable size.

• Checkpointing and replication mandatory since streams don’t have source data files to

reconstruct lost RDD partitions (except for the directory ingest case).

• Write Ahead Logging to prevent Data Loss

Direct Kafka Streaming w/ Kafka Direct API

• Use Kafka Direct Approach (No Receivers)

• Queries Kafka Directly

• Automatically Parallelizes based on Kafka Partitions

• (Mostly) Exactly Once Processing - Only Move Offset after

Processing

• Resiliency without copying data

Demo & Code

