Modern Data Pipelines

Ryan Knight
James Ward

@TODO
@_JamesWard

. .

Distributed Systems guru
Scala, Akka, Cassandra Expert & Trainer
Skis with his 5 boys in Park City, UT

First time to jFokus

Ryan Knight

Architect at Starbucks

Back-end Developer
Creator of WebJars

Blog: www.jamesward.com

Not a JavaScript Fan

J ames Ward In love with FP

salesforce

Developer at Salesforce

Agenda

* Modern Data Pipeline Overview
* Kafka

* Akka Streams

* Play Framework

* Flink

e (Cassandra

* Spark Streaming

Code

github.com/jamesward/koober

- -

Modern Data Pipelines

Real-Time, Distributed, Decoupled

Why Streaming Pipelines
Real Time Value

 Allow business to react to data in real-time instead of batch

Real Time Intelligence

* Provide real-time information so that the apps can use the information
and adapt their user interactions

Distributed data processing that is both scalable and resilient

Clickstream analysis
Real-time anomaly detection

Instant (< 10 s) feedback - ex. real time concurrent video viewers / page
VIEWS

e ok e a0

Data Pipeline Requirements

* Ability to process massive amounts of data

* Handle data from a wider variety of sources

* Highly Available

* Resilient - not just fault tolerant

* Distributed for Scale of Data and Transactions
* Elastic

* Uniformity - all-JVM based for easy deployment and management

e ok e a0

raditional ETL

Hadoop processing requires
real-time data

Data comes in and is copied or
streamed to various places

‘_ Real-time processing requires
update RDBMS data

v

Adding a fourth system adds

another separate ETL process

Data Integration Today

Data Pipelines today

http://ferd.ca/queues-don-t-fix-overload.html

Backpressure

http://terd.ca/queues-don-t-fix-overload.html

e ok e a0

Data Hub / Stream Processing

The ETL'd data acts a single
source of truth. Data is only
processed once and consumed
many times.

h 4

Loose coupling makes it easy to
add a new consumer

Pipeline Architecture

N\ o Spark
. Notebook
Web Client \
Flink
' Spark
| core, streaming,
// graphx, mllib, ...
/ ,,
/ :
/ :'
Play App \ Z \
Spark L N\
Kaftka |-~ — Cassandra
Cold Data

e ok e a0

Koober

github.com/jamesward/koober

Kaftka

' Distributed Commit Logs

What 1s Kafka?

Kafka 1s a distributed and partitioned commit log

Replacement for traditional message queues and publish subscribe
systems

Central Data Backbone or Hub
Designed to scale transparently with replication across the cluster

e ok e a0

Core Principles

1. One pipeline to rule them all
2. Stream processing >> messaging
3. Clusters not servers

4. Pull Not Push

Kafka Characteristics

Scalability of a filesystem
* Hundreds of MB/sec/server throughput
* Many TB per server

Durable - Guarantees of a database
* Messages strictly ordered

* All data persistent
Distributed by default

* Replication
* Partitioning model

e ok e a0

Kafka 1s about logs

d((/6/ Jé ll//l

peo 5

I 1/140" : < /dﬂ/‘oc(“ pee” /J'A‘ﬂ
w A / 4:/{/ / '4 /_’r o
7 go K s D ot Jo2s’
' .5' f ;j e ://‘!'l .zt(»r'
<2 /(/ e z’,v &I‘ >l S)oj,'

- / ///n/< 4/ P /o

- .-4\ Pt cn ey 7 e

~ / /4“/ /d/ / -’-‘ff'

7 S K | /Ao Goknecs = foves ,f.-?-'f/'
a2l ¥ .).’/; '.\.r I 2720

| R) A Dy [Josy

o ey -// /Jaoco - lro’od‘

‘ B v 7 -’07 £on ~ 4. /v-/-‘
| ATV A ~ % //zbw' “ ST,

7//

»’
“art

The Event Log

Append-Only Logging
Database of Facts

Disks are Cheap

Why Delete Data any more?
Replay Events

Append Only Logging

1st Record

'

Next
Record
Written

)

10

1"

12

——

Logs: pub/sub done right

Data Source

wriies

111 1— :

I
|_090123456789012:
-

/ads reids

Destination Destination

System A System B

(time =7) (time = 11)

e ok e e o

Katka Overview

Producers write data to brokers.

Consumers read data from brokers.

* Brokers - Each server running Kafka is called a producer producer producer
broker. C C I
L
* All this 1s distributed. \L/
* Data kafka

— Data is stored in topics. cluster

— Topics are split into partitions, which are m

replicated. consumer -n consumer -" consumer -n

Built in Parallelism and Scale :

e ok e a0

Kafka cluster

/C) broker1)\

producer
("zerg.hydra")

1
Ovokers, Produfers and
LorSumers use Foof.eefer
te manase and shave state
—

http://www.michael-noll.com/blo

T~

Inw
=

active replica {id y) of partition x
for topic "zerg.hydra"

active replica {id y) of partition x,
this broker is leader for that partition

PO P2

R1 R1
'-O broker2)

PO P1

R2 R2

\<) broker3)/

P1 P2

R3 R3
3

7| ZooKeeper

=@

consumer
("zerg.hydra")

/2013/03/13/running-a-multi-broker-apache-katka-cluster-on-a-single-node/

Partitions

A topic consists of partitions.

Partition: ordered + immutable sequence of messages
that 1s continually appended to

Anatomy of a Topic

Partition 111

1
0 o(1r|2|3|4|5|6|7|8)|9 ol1 2:‘\\\\\\\\\\
B
Partition ' - /Writes

1

—
.
—

Partition '
P o|1]|12|3|4|5|6|7]|8]|9 ol1i2

Old » New

Partition offsets

- Offset: messages 1n the partitions are each assigned a unique
(per partition) and sequential 1d called the offset

- Consumers track their pointers via (offset, partition, topic) tuples

Consumer group C1 T

Partition 1.

0 0 23456789012:\

__‘

-)

Pa";‘m" oDz 3 5|le|7|slo! - Writes
- ‘////////

1

Partition 11101
> o|11|2 3|||\5 6|7|8|9 o112
'

Old = New

Example:
A Fault-tolerant CEO Hash Table

Operations

PUT('microsoft’, 'bill gates’) .
PUT(‘apple’, 'steve jobs') Final State

(
(

PUT('microsoft’, 'steve ballmer")

PUT('google’, 'larry page')

PUT('yahoo', 'terry semel’)

PUT('google’, 'eric schmidt') {

PUT('yahoo', 'jerry yang') , . P I

PUT(yahoo, oarolbarz) microsoft': 'satya nadella’,
(
(
(
(

PUT('apple’, 'tim cook')

PUT('google’, 'larry page') I I, 14} I
PUT('yahoo', 'scott thompson') apple . tlm COOk y
PUT('yahoo', ‘'marissa mayer’)

PUT('microsoft', 'satya nadella’) Igoog|e| 'larry page"
'yahoo': ‘'marissa mayer

Replica 1 Replica 2

e ok e a0

Kafka Log

9 10 11 12

8

(ellopeu BAjES 0800IW)| Nd

(JoAew essiew ‘ooueh) 1 Nd

(uosdwouy) 1oas ‘ooyeh) 1 Nd

(abed Aue) ‘8)6006) 1 Nd

Replica 2
(offset=12)

(000 Wi} ‘a|dde) | Nd

(z11eQ |0120 ‘00UeA) 1 Nd

(Bued Aual ‘ooyeh) Nd

(Ipiuyos oua ‘8Boob) Nd

Replica 1

(offset=10)

(jowas Aug) ‘ooueh) Nd

(abed ALe| ‘9)6006) | Nd

(JaWi[eq BABYS }0S0IOIW) [Nd

(sqol easls ‘s|dde) | Nd

(se1eb |1q ‘Josouiw) [Nd

Heroku Katka

* Managed Kafka Cloud Service
 https://www.heroku.com/kaftka

Code

- -

Akka Streams

Reactive Streams Built on Akka

Reactive Streams

A JVM standard for asynchronous stream processing with non-blocking back pressure

External
Data Source

BACK PRESSURE

=) 2) 2) Overflow =) 2) 2)

DATA STREAM Protection |

Validate

Akka Streams

Powered by Akka Actors

Impl of Reactive Streams

Actors can be used directly or just internally

Stream processing functions: map, filter, fold, etc

e ok e a0

Sink & Source

val source = Source.repeat("hello, world")
val sink = Sink.foreach(println)

val flow = source to sink

flow.run()

e ok e a0

Code

- -

Play Framework

Web Framework Built on Akka Streams

Play Framework
Scala & Java — Built on Akka Streams

Declarative Routing:

GET /foo controllers.Foo.do

Controllers Hold Stateless Functions:

class Foo {
def do() = Action {

Ok ("hello, world")

}

e ok e a0

Reactive Requests
Don't block 1n wait states!

def doLater = Action.async {

Promise.timeout (Ok ("hello, world"), 5.seconds)

def reactiveRest = Action.async {
ws.url ("http://api.foo.com/bar") .get () .map { response =>

Ok (response.json)

}

e ok e a0

WebSockets
Built on Akka Streams

def ws = WebSocket.accept { request =>
val sink =
val source =

Flow.fromSinkAndSource (Sink.1gnore, source)

e ok e a0

Views
Serverside Templating with a Subset of Scala

app/views/blah.scala.html Action {

Ok (views.html.blah ("bar"))

@(foo: String)

<html> <html>
<body> <body>
@foo bar
</body> </body>
</html> </html>

e ok e a0

Demo & Code

Flink

| Real-time Data Analytics

Flink
Real-time Data Analytics

Bounded & Unbounded Data Sets

Stream processing

Distributed Core

 Fault Tolerant

 (lustered

Flexible Windowing

Apache Flink

Continuous Processing for Unbounded Datasets

LI

count() 5

e ok e a0

Windowing

Bounding with Time, Count, Session, or Data

aemm ¢ B

1s 1s count() 3

e ok e a0

Batch Processing
Stream Processing on Finite Streams

EEEE O 8

count() 4

e ok e a0

Data Processing
What can we do?

* Aggregate / Accumulate fold(), reduce(), sum(), min()

e Transform map(), flatMap()

- Filter filter(), distinct()

e Sort sortGroup(), sortPartition()

e ok e a0

Apache Flink

Architecture

APls & Libraries

Core

Deploy

o0 g 2
g = @
— v
3 O 3
g 5 - S 5
bu T — Q S T
c o c
Q. o O S £ o
+ D S = c > < R
&g | |2 S8 38 B
w T - o T s GG - o
DataStream API DataSet API
Stream Processing Batch Processing
Runtime
Distributed Streaming Dataflow
Local Cluster Cloud
Single JVM Standalone, YARN GCE, EC2

Partitioning
Network Distribution

keyBy()/ Streaming Dataflo
Source map() wincow()/ Sink fcondensed view)
apply()
Operator Stream Q
S / " O N, o - o -
keyBy()/
Source map() window()/
(1] 1] apply()
‘)
=
Operator Stream Sink
Subtask Partition [1] | Streaming Dataflow
! I (parallelized view)
keyBy()/
Source map() window()/
2] 2] apply()
2]
-, N, o, \". X s s _
parallelism = 2 \

parallelism = 1

Demo & Code

Cassandra

Distributed NoSQL Database

Challenges with Relational Databases

* How do you scale and maintain high-availability with a
monolithic database?

* Is 1t possible to have ACID compliant distributed transactions?

 How can I synchronize a distributed data store?

* How do I resolve differing views of data?

e ok e a0

Replication: ACID 1s a lie

Consistent results? Nope!

Sharding 1s a Nightmare

* Data i1s all over the place
* No more aggregations

* Denormalize all the things

* Querying secondary indexes
requires hitting every shard

* Adding shards requires manually
moving data r

A
* Schema changes ¥
&»,s‘?

b gy

']

A

High Availablility.. not really

* Master failover... who's responsible?

+ Another moving part.. SERVERS DOWN NO ETA
. ' M e R
! : :

* Bolted on hack
* Multl-DC I1s a mess

* Downtime is frequent

* Change database settings (innodb buffer

pool, etc)

P
* Drive, power supply failures _
==

= \ =
WEREWORKING ON'Te

Goals of a Distributed Database

. Consistency 1s not practical - give it up!

. Manual sharding & rebalancing 1s hard - Automatic
Sharding!

. Every moving part makes systems more complex

. Master / slave creates a Single Point of Failure / Bottleneck
- Simplity Architecture!

. Scaling up 1s expensive - Reduce Cost

. Leverage cloud / commodity hardware

e ok e a0

What 1s Cassandra?

Distributed Database

v/ Individual DBs (nodes) / \
e .o

v Nothing 1s shared ‘.

v/ Working in a cluster \

Cassandra Cluster

1read or write

* Nodes 1n a peer-to-peer cluster
* No single point of failure

* Built 1n data replication

* Data 1s always available
* 100% Uptime

* Across data centers
 Failure avoidance

Multi-Data Center Design

Why Cassandra?

It has a flexible data model

Tables, wide rows, partitioned and distributed
v Data

v Blobs (documents, files, images)

v Collections (Sets, Lists, Maps)

v UDTs

Access 1t with CQL « familiar syntax to SQL

Column Column Column
Row Key1 Key1l Key2 Key3

Column Column Column

Valuel Value2 Value3

Two knobs control Cassandra fault tolerance

Replication Factor (server side)

RF=3

How many copies of the data should exist?

Two knobs control Cassandra fault tolerance
Consistency Level (client side)

How many replicas do we need to hear from before we acknowledge?

CL=ONE CL=QUORUM

Write A Write A

Consistency Levels
Applies to both Reads and Writes (1.e. 1s set on each query)

ONE - one replica from any DC

LOCAL_ONE — one replica from local DC
QUORUM - 51% of replicas from any DC
LOCAL_QUORUM - 51% of replicas from local DC
ALL — all replicas

TWO

e ok e a0

Consistency Level and Speed

How many replicas we need to hear from can affect
how quickly we can read and write data in

Cassandra? Read A

(CL=QUORUM)

12 ps ack

Consistency Level and Availability

Consistency Level choice affects availability

ONO

Client

Reads 1n the cluster

Same as writes 1n the cluster, reads are coordinated
Any node can be the Coordinator Node

Read A
(CL=QUORUM)

-

Coordinator Node

Spark Cassandra Connector

9

\\!?

-~
—
—
—_—
—
—

L
el A" b J 1Y
CY Y L A)

Spark Cassandra Connector

Data locality-aware (speed)

Read from and Write to Cassandra

Cassandra Tables Exposed as RDD and DataFrames
Server-Side filters (where clauses)

Cross-table operations (JOIN, UNION, etc.)

Mapping of Java Types to Cassandra Types

e ok e a0

Spark Cassandra Connector

Spark Cassandra Connector uses the DataStax Java Driver to
Read from and Write to C*

Spark Each Executor Maintains
Executor

a connection to the C*
Java Driver Cluster
.

Tokens ...

Tokens 1001 -2000
Full Token RDD’s read into different

Range Tokens 1-1000 ,
splits based on sets of tokens

Code

- -

Spark Streaming

Stream Processing Built on Spark

Hadoop?

Hadoop Limitations

e Master / Slave Architecture

* Every Processing Step requires Disk 10
* Difficult API and Programming Model
* Designed for batch-mode jobs

* No even-streaming / real-time

* Complex Ecosystem

e ok e a0

What 1s Spark?

Fast and general compute engine for large-scale data processing
Fault Tolerant Distributed Datasets

Distributed Transformation on Datasets

Integrated Batch, Iterative and Streaming Analysis

In Memory Storage with Spill-over to Disk

e ok e a0

Advantages of Spark

* Improves efficiency through:
* In-memory data sharing
* General computation graphs - Lazy Evaluates Data
* 10x faster on disk, 100x faster in memory than Hadoop MR

* Improves usability through:
* Rich APIs 1n Java, Scala, Py..??
* 2 to Sx less code
* Interactive shell

e ok e a0

Spark
Streaming

Spark SQL MLlIib

_ structured machine learning
real-time

Spark Core

Spark Components Hosting

Spark Master Ul
Hosting 7080 Spark Master
Application Ul
:4040 AP hich M h
Application rocess which Manages the
(Spark Driver) Resources of the Spark Cluster

You application code
which creates the SparkContext

Worker

A process which shells out to create
a Executor JVM

These processes are all separate and require networking
to communicate

e ok e a0

Resilient Distributed Datasets (RDD)

* The primary abstraction in Spark

* Collection of data stored in the Spark Cluster
* Fault-tolerant

* Enables parallel processing on data sets

* In-Memory or On-Disk

e ok e a0

RDD Operations

Transformations - Similar to scala collections API

Produce new RDDs:
filter, flatmap, map, distinct, groupBy,

union, z1p, reduceByKey, subtract

Actions - Require materialization of the records to generate a value

collect: Array|[T], count, fold, reduce..

e ok e a0

DataFrame

e Distributed collection of data
 Similar to a Table in a RDBMS
* Common API for reading/writing data

* API for selecting, filtering, aggregating
and plotting structured data

e ok e a0

DatakFrame Part 2

* Sources such as Cassandra, structured data files, tables 1n
Hive, external databases, or existing RDDs.

* Optimization and code generation through the Spark SQL
Catalyst optimizer

* Decorator around RDD - Previously SchemaRDD

e ok e a0

Spark Versus Spark Streaming

zillions of bytes gigabytes per second

’."23 /Spor‘lzz

Streaming

Spa \
Mu-—w_‘

Spark Streaming Data Sources

j”f!%l»-/ '//A

nazon — o 4
Cheentes akka [ov
poar

M@ \Streaming/

\

Spark Streaming General Architecture

Kafka J\Z [

Flume HDFS
HDFS Sp Qr K) [Databases
ZeroMQ Streamin 9 | Dashboards

Twitter

e ok e a0

DStream Micro Batches

DStream

pBatch (ordinary RDD)

pBatch (ordinary RDD)

pBatch (ordinary RDD)

Processing of DStream = Processing of pyBatches, RDDs

Spa

K

e ok e a0

Windowing

window

>

Os 1s 2S 3S 43 5s 0S /S

By default:
window = slide = batch duration

B dandiaig . _ ol a@n i

Windowing

window = 3S

>

Os 1s 2S 3Ss 4s 5s 6S /S

>

slide = 2s

The resulting DStream consists of 3 seconds micro-batches
Each resulting micro-batch overlaps the preceding one by 1 second

b aniiaig ol a@al il o

Streaming Resiliency without Kafka

* Streaming uses aggressive checkpointing and in-memory data replication to improve

resiliency.

Frequent checkpointing keeps RDD lineages down to a reasonable size.

Checkpointing and replication mandatory since streams don’t have source data files to

reconstruct lost RDD partitions (except for the directory ingest case).

Write Ahead Logging to prevent Data Loss

e ok e a0

Direct Kafka Streaming w/ Kafka Direct API

* Use Kafka Direct Approach (No Receivers)
* Queries Kafka Directly
* Automatically Parallelizes based on Kafka Partitions

* (Mostly) Exactly Once Processing - Only Move Offset after

Processing

* Resiliency without copying data

e ok e a0

Demo & Code

