
Risk-Aware Role-Based Access Control

Liang Chen and Jason Crampton

Information Security Group and Department of Mathematics
Royal Holloway, University of London

{liang.chen.2005,jason.crampton}@rhul.ac.uk

Abstract. The increasing need to share information in dynamic envi-
ronments has created a requirement for risk-aware access control systems.
The standard RBAC model is designed to operate in a relatively stable,
closed environment and does not include any support for risk. In this
paper, we explore a number of ways in which the RBAC model can be
extended to incorporate notions of risk. In particular, we develop three
simple risk-aware RBAC models that differ in the way in which risk is
represented and accounted for in making access control decisions. We
also propose a risk-aware RBAC model that combines all the features of
three simple models and consider some issues related to its implementa-
tion. Compared with existing work, our models have clear authorization
semantics and support richer types of access control decisions.

1 Introduction

Access control mechanisms are typically policy-based, meaning that attempts to
access resources are allowed or denied based on whether the access is authorized
by some policy. Traditionally, the job of an access control system is to decide
whether an access is authorized and to allow only those access attempts that are
authorized.

Risk-aware access control is a novel access control paradigm that was pro-
posed to meet the increasing need to share information in “agile” and ephemeral
organizations such as coalitions and collaborations [7, 13, 15, 17, 23]. The core
goal of developing risk-aware access control is to provide a mechanism that can
manage the trade-off between the risk of allowing an unauthorized access with
the cost of denying access when the inability to access resources may have pro-
found consequences. When a user makes a request to access some resources, a
risk-aware access control mechanism will evaluate the request by estimating the
expected costs and benefits of granting access: the request might be denied if
the risk is above some system-defined threshold; alternatively, the request might
be denied if the cost exceeds the expected benefit.

This approach to deciding access requests is completely different from earlier
access control models in which access control decisions are made on the basis
of predefined policies that explicitly distinguish between allowed and denied
access. In other words, risk-aware access control systems are designed to be more
permissive than traditional access control mechanisms, in the sense that some



risky or exceptional accesses are allowed, provided the risk of allowing such access
can be accounted for and is not unacceptably high. Therefore, an important
step for modeling risk-aware access control is to identify appropriate ways of
estimating and managing risk. Most existing work in the literature attempts to
achieve this in the context of multi-level security [7, 17].

Role-based access control (RBAC) has been the subject of considerable re-
search in the last decade [3, 11, 22], resulting in the release of the ANSI RBAC
standard [1]. A number of commercial products, such as Windows Authoriza-
tion Manager and Oracle 9, implement some form of RBAC. The basic idea of
RBAC is that users and permissions are associated with roles, and that there
are significantly fewer roles than there are users or permissions. In other words,
a role provides a convenient way of associating a group of users with some set of
permissions. This feature of role abstraction greatly simplifies the management
of access control policies. Some other features that make RBAC attractive in-
clude the support for role hierarchies and the specification of separation of duty
constraints [1].

To make use of RBAC in dynamic environments, we believe that there is a
pressing need to develop appropriate risk-aware RBACmodels, and it is this need
we address in this paper. However, existing work in this area has one common
limitation: existing models for risk-aware RBAC [2, 5, 10, 18] only support the
type of binary decisions, where the accesses with acceptable risk are allowed (and
denied otherwise). We believe that risk-aware RBAC models should be able to
make access control decisions on the basis of estimates of risk, system-defined risk
thresholds, and risk mitigation strategies. In addition, existing models usually
assess risk of granting access requests in terms of the trustworthiness of users [5,
10]. However, the question of whether we could assess risk in terms of other
components of RBAC model, to the best of our knowledge, has not yet been
adequately investigated. Such considerations are the focus of this paper. More
specifically, the contributions of this paper are as follows.

– We argue that the risk of granting an access request in an RBAC system
depends on one or more of the following factors: user trustworthiness, the
degree of competence of a user with respect to a particular user-role assign-
ment, and the degree of appropriateness of a permission-role assignment for
a given role.

– We propose a novel approach to the management and coordination of risk in
an RBAC system. Our approach requires that each permission is associated
with a risk mitigation strategy that is a list of risk interval and obligation
pairs, where each risk interval is associated with an obligation. This approach
of defining risk management at the permission level is much more fine-grained
than most existing approaches that typically adopt a global mitigation and
risk management strategy [7].

– We develop three simple risk-aware RBAC models, varying in the way of
measuring and computing risk. These three models augment the standard
RBAC96 model with a risk-aware authorization decision function.



– We introduce a risk-aware RBAC model that combines all the features of
three simple models, and propose a strategy for the implementation of the
model in practice.

The rest of the paper is organized as follows. In the next section we introduce
relevant background material, including a graph-based formalism of RBAC96
and our recent work on spatio-temporal RBAC models; this prior work forms
the basis for our risk-aware model. In Sect. 3 we discuss how to determine the
risk of granting access requests in an RBAC system. In Sect. 4 we formally
define the RBACT , RBACC , RBACA models. In Sect. 5 we introduce the full
risk-aware RBAC model. Section 6 compares our work with related work in the
literature. Section 7 concludes the paper with some suggestions for future work.

2 Background

There are several role-based access control models in the literature, but the
best known is undoubtedly the RBAC96 family of models due to Sandhu et

al [22]. RBAC96 defines four access control models: RBAC0, RBAC1, RBAC2

and RBAC3. The material in this paper is developed in the context of RBAC1,
which is the most widely used model and corresponds to the hierarchical model
in the ANSI RBAC standard; hereafter we write RBAC96 to mean RBAC1 only.

The RBAC96 model defines a set of roles R, a role hierarchy RH ⊆ R ×
R, a user-role assignment relation UA ⊆ U × R (where U is a set of users),
and a permission-role assignment relation PA ⊆ P × R (where P is a set of
permissions1). We write 6 to denote the transitive, reflexive closure of the RH

relation; (R,6) is a partially ordered set (since the directed graph of the role
hierarchy relation is assumed to be acyclic). We represent an RBAC96 state
(an instance of the RBAC96 model) as a tuple (UA,PA,RH ). The RBAC96
state is used to determine whether an access control request (modeled as a user-
permission pair) is authorized.

2.1 RBAC96 State as a Directed Graph

We noted that it is convenient to represent an RBAC96 state as an acyclic
directed graph [6]. In particular, it provides a simple way of evaluating access
requests in an RBAC96 system. In this paper, we will develop our risk-aware
RBAC models based on this graph-based representation.

An RBAC96 state (UA,PA,RH ) is represented by an acyclic, directed graph
G = (V,E), where V = U ∪R∪P , and E = UA∪PA∪RH . In other words, each
vertex v represents an entity, such as a user u, a role r or a permission p in an

1 The RBAC96 model treats permissions as “uninterpreted symbols”, because the
precise natural of permissions is “implementation and system dependent”. In the
ANSI RBAC standard [1], which is based on the RBAC96 model, permissions are
defined by an object and an action. For the sake of consistency with the ANSI RBAC
standard, we define permissions as object-action pairs in this paper.



RBAC96 system, and each directed edge e = (vi, vj) represents a relationship
between two entities vi and vj ; specifically, (vi, vj) ∈ E if and only if (precisely)
one of the following conditions holds

(vi, vj) ∈ UA, (vj , vi) ∈ RH , (vj , vi) ∈ PA.

An authorization path (or au-path) between v1 and vn is a sequence of vertices
v1, . . . , vn such that (vi, vi+1) ∈ E, i = 1, . . . , n− 1. In particular, a user u can
(“is authorized to”) activate a role r if there is an au-path between u and r; a
role r is authorized for permission p if there is an au-path between r and p; and
a user u is authorized for permission p if there is an au-path between u and p. In
other words, determining whether a user u is authorized to invoke a permission
p reduces to finding a path from u to p that includes a role activated by u. A
central notion in RBAC96 is that of sessions. For ease of exposition, we do not
consider sessions until Section 5.1.

2.2 Spatio-Temporal Constraints and Inheritance in RBAC

Recently, we developed a family of spatio-temporal RBACmodels [6]. The syntax
of these models uses a simple extension of the RBAC96 model with two spatio-
temporal constraint specification functions. The semantics of these models are
based on the graph-based formalism of RBAC96 described above, and vary in the
extent to which RBAC entities and relations are constrained by spatio-temporal
restrictions.

We believe that our examination of spatio-temporal RBAC models provides
useful insights into the way of developing risk-aware RBAC models. In partic-
ular, based on the lessons learned from our study of the complex interactions
between constraints and inheritance, we decide not to associate risk with roles
and relationships within the role hierarchy. Indeed, it is not clear to us how risk
can meaningfully be associated with roles and the role hierarchy. In the next
section, we describe how we choose to define risk in RBAC.

3 Defining Risk in RBAC

In the field of information security, the notion of risk is often defined in terms of
a combination of the likelihood that a threat will occur, and the severity of the
resulting impact of the threat [16]. In the context of RBAC, we take the view
that the risk of granting a request to perform some permission can be generally
determined by the cost that will be incurred if the permission is authorized and
subsequently misused, and the likelihood of the permission being misused.

One of the key steps to deploying a risk-aware RBAC system is to estimate
the cost of permissions being misused, where the cost of a permission misuse
depends on the value of the object associated with that permission and the
action that is taken on the object. In the context of multi-level security models,
for example, the cost of a read permission being misused is determined by the



value of the information requested to be read, where the value of the information
is represented by a sensitivity label to which the information is assigned [7].
There exist approaches to determine the cost of permission misuse [14], although
choosing an appropriate approach for estimating the cost of permission misuse
is likely to be a delicate task.

On the other hard, determining the likelihood of misuse of permissions is
inherently hard, since it requires an ability to predict future actions of the
requestors. In RBAC, we believe that there are at least three ways in which
permission misuse might arise and the likelihood of misuse might therefore be
quantified.

Firstly, there is a natural correspondence between trustworthiness and the
likelihood of misuse of permissions. In earlier RBAC models (and access control
models in general), authorized users are always trusted not to misuse the per-
missions for which they are authorized. Clearly, however, some authorized users
are not trustworthy. It is reasonable to define different degrees of trustworthi-
ness of users which directly reflects the likelihood of those users to misuse their
granted permissions. Intuitively, a user who has a high likelihood of misusing
her permissions can be simply regarded as being less trustworthy.2 In Sect. 4.2
we consider an RBAC model in which user trustworthiness is an explicit part of
the model.

In RBAC, a user is authorized for a permission by virtue of role assignments,
where roles typically correspond to various job functions within an organization.
Users are assigned to roles based on their qualification or competence, whereas
permissions are associated with roles based on work-related or functional con-
siderations. In Sect. 4.3, we propose an approach in which the user’s competence
to perform a role to which she is assigned is explicitly qualified.

Based on the above observations, we assume that if a role is assigned to a
less competent user, then this user has a higher likelihood of misusing permis-
sions associated with the role than some more competent user. Conversely, we
can try to quantify the degree to which it is appropriate to assign a permission
to a role. In some situations, it may be useful to associate a role with permis-
sions for which the role is not obviously appropriate. In a healthcare system,
for example, we might wish to restrict authorization to read medical records to
doctors and consultants. However, we may choose to authorize the nurse role
to read patients’ medical records, not because it is appropriate, but because in
an emergency it may be vital that there is some healthcare professional who is
able to access medical records. Given a role that is associated with some less
appropriate permissions with regard to the role’s job duties, we take the view
that any user who is authorized for this role has a relatively high likelihood of
misusing those permissions. We introduce an RBAC model in Sect. 4.4 which
explicitly quantifies the appropriateness of a permission-role assignment.

2 Trust-management and reputation-management system are tools that might be used
to compute the trustworthiness of users [8].



4 Simple Models for Risk-Aware RBAC

In this section, we develop three simple models for risk-aware RBAC that support
richer types of policy decisions beyond the usual “deny” and “grant” ones. In
particular, the access control decision function in our models is able to make
its access decisions based on the RBAC policies and the risk of granting access
requests. As discussed in Sect. 3, the risk of granting a request (u, p) is defined
using the cost of p misuse, and the likelihood of u to misuse p. There are three
distinct possibilities that can be used to measure the likelihood of misuse of
permissions, which are embodied in our different models.

4.1 Risk Mitigation

To devise a risk-evaluation strategy for RBAC, we need to determine a risk

threshold that the RBAC system is willing to accept when granting access re-
quests, and what kind of risk mitigations should occur if a risky access is allowed.
In this paper, we define risk thresholds and risk mitigation strategies on a per-
permission basis, which provides far more control than the common alternative
of setting risk thresholds that apply to all permissions.

We assume the existence of a risk domain D = [0, 1]
def
= {d ∈ R : 0 6 d 6 1}.

We write [t, t′) to denote the risk interval {x ∈ D : t 6 x < t′}. LetB denote a set
of obligations, where an obligation b ∈ B is some action(s) that must be taken by
the Policy Enforcement Point (PEP) when enforcing an access control decision
(as in XACML [19]). For uniformity of exposition, we write ⊥ to denote the
“null” obligation; the PEP is not required to do anything for the null obligation.

Informally, we associate a permission p with a list of interval-obligation pairs:
if the risk associated with access request (u, p) is t then we enforce the obliga-
tions corresponding to the interval containing t. More formally, we define a risk

mitigation strategy to be a list [(0,⊥), (t1, b1), . . . , (tn−1, bn−1), (tn,⊥)], where
0 < t1 < t2 < · · · < tn 6 1 and bi ∈ B. Each permission p is associated with a
risk mitigation strategy. Then,

– the request (u, p) is permitted (unconditionally) if the risk of allowing (u, p)
is less than t1;

– the request (u, p) is permitted but the PEP must enforce obligation bi if the
risk of allowing (u, p) belongs to [ti, ti+1);

– the request (u, p) is denied if the risk of allowing (u, p) is greater than or
equal to tn.

It can be seen that the first element of the risk mitigation strategy is redundant;
we include it for clarity of exposition.

Although our approach increases the complexity of risk management at the
permission level, it is much more fined-grained than most existing approaches
that usually adopt a global mitigation and risk management strategy [7, 13, 15].
In other words, unlike our approach, the occurrence of errors in the management
of the global risk thresholds will have an impact on the correctness of deciding
all relevant access requests.



In addition, by associating risk thresholds with permissions we simplify the
computation of risk of granting requests. In particular, we can ignore the cost
of a permission p being misused when considering the risk of granting p. This
is because system administrators have “valued” the cost of p’s misuse by defin-
ing risk thresholds and risk mitigations for p. In contrast, existing approaches
that manage risk globally have to be aware of the cost of permissions being mis-
used when evaluating requests for those permissions. Henceforth, we are only
concerned with the likelihood of p’s misuse in the computation of the risk of
granting p.

4.2 The RBACT Model

The trustworthiness- and role-based access control (or RBACT ) model augments
the standard RBAC96 model with two functions α : U → (0, 1] and λ : P → M ,
where α(u) denotes the degree of trustworthiness of u, M denotes the set of risk
mitigation strategies and λ(p) denotes the risk mitigation strategy associated
with p’s usage. To compute the risk of granting a request (u, p), we define a risk
function riskT : U × P → [0, 1] as

riskT (u, p) =







1− α(u) if there exists an au-path from u to p

1 otherwise.

In other words, riskT (u, p) is 1 for request (u, p) if there does not exist an
au-path from u to p. By definition, for any permission p, the request (u, p) will be
denied if the risk of granting it equal to 1; that is, if there is no au-path from u to
p. In contrast, if there exists an au-path from u to p, the risk of granting (u, p) is
determined by u’s trustworthiness. For example, given two requests (u1, p) and
(u2, p), riskT (u1, p) < riskT (u2, p) < 1 means that allowing u2 to perform p is
more risky than allowing u1 to access (because u1 is more trustworthy than u2).
Note that riskT (u, p) is determined, in part, by the existence of an au-path from
u to p. In other words, our approach to risk computation in RBACT incorporates
the standard RBAC method of checking whether a request is authorized. This
will be a common feature of our risk-aware models.

We now define an authorization decision function AuthT which, given an
RBACT state (V,E, α, λ), an access request (u, p) and a risk mitigation strategy
λ(p) = [(0,⊥), (t1, b1), . . . , (tn−1, bn−1), (tn,⊥)] for p, returns an authorization
decision and an obligation. Specifically,

AuthT ((V,E, α, λ), (u, p), λ(p)) =















(allow,⊥) if riskT (u, p) < t1,

(allow, bi) if riskT (u, p) ∈ [ti, ti+1),

(deny,⊥) if riskT (u, p) > tn.

In other words, a request by u to perform p is allowed if there exists an au-
path from u to p in the RBACT graph and the risk of granting (u, p) is less



than a specified risk threshold tn of p (and denied otherwise). In addition, some
system obligations bi will be forced to execute with the allow access if the risk
is perceived as being relatively high (within some interval [ti, ti+1), where 1 6

i < n).
We believe that the concept of trustworthiness and the risk-assessment

methodology we developed in RBACT can be naturally integrated into other
access control models, enabling them to become risk-aware. In the next section,
we introduce risk-aware RBAC models with consideration of competence and ap-
propriateness in the user-role assignments and the permission-role assignments
respectively.

4.3 The RBACC Model

The competence- and role-based access control (or RBACC) model augments the
standard RBAC96 model with two functions β : U ×R → (0, 1] and λ : P → M ,
where β(u, r) denotes u’s degree of competence to perform role r, and λ(p)
denotes the risk mitigation strategy associated with p’s usage. Note that, for all
(u, r) ∈ UA, we require β(u, r) > 0; this is because it is not meaningful to assign
u to r if u has no competence to perform the role r. Unlike RBACT , RBACC

defines the concept of competence on the user-role assignments, which leads to
a different way of computing the risk of granting requests.

Given an RBACC state G = (V,E, β, λ), we write (v, ∗) for the set of entities
that are connected from v by edges; that is, (v, ∗) = {v′ ∈ V : (v, v′) ∈ E}.
We also write (∗, v) for the set of entities that connected to v by edges; that is,
(∗, v) = {v′ ∈ V : (v′, v) ∈ E}. For brevity, we write v∗ for (v, ∗) and ∗v for (∗, v).
Given v ∈ V , we write ↓v to denote the set of entities for which v is RBAC96-
authorized; that is ↓v = {v′ ∈ V : there exists an au-path from v to v′}. Analo-
gously, we define ↑v = {v′ ∈ V : there exists an au-path from v′ to v}.

Given a request (u, p), there may be multiple paths between u and p in
the RBACC graph. Obviously, we are interested in finding the set of roles for
which u is explicitly authorized and that lie on an au-path from u to p, that is
u∗ ∩ ↑p. To compute the risk of granting (u, p), we need to consider the degree
of competence that u has to perform each role in u∗∩↑p. Given a request (u, p),
there might exist one or more au-paths from u to p, the risk of granting (u, p)
is determined by finding an au-path u, r, . . . , p such that β(u, r) is maximum. In
other words, u is competent to perform all roles in u∗ ∩ ↑p to some extent, and
there is a role for which she is most competent, therefore this role is the one
that is considered when evaluating the access request. Formally, we define a risk
function riskC : U × P → [0, 1] as

riskC(u, p) =







1 if u∗ ∩ ↑p = ∅,

1−max{β(u, r) : r ∈ u∗ ∩ ↑p} otherwise.

Consider the directed graph of an RBACC configuration shown in Fig. 1(a),
where β(u1, r1) = β(u2, r3) = 1

2
, and β(u1, r2) = β(u2, r2) = 1

3
. Then u1 is



s
u1

sr1

s

p1

sr2

s

p2

s
u2

sr3

s

p3

1

2

1

2

1

3

1

3

�
�

��	

�
�

��	

@
@
@@R

?

? ?

??

(a) A simple RBACC state

s
u1

sr1

s

p1

s
u2

sr2

s

p2

1

2
1

1

3

?

? ?

?

��������

��������

(b) A simple RBACA state

Fig. 1. A graphical representation of RBACC and RBACA states

able to perform p1 through the role r1 for which u1 is most competent. Hence,
riskC(u1, p1) = 1 − 1

2
= 1

2
. However, riskC(u1, p3) = 1 as u∗ ∩ ↑p3 = {r1, r2} ∩

{r3} = ∅ which means there is no au-path from u1 to p3.
Given an RBACC state (V,E, β, λ), an access request (u, p) and a risk mitiga-

tion strategy λ(p) for p, we can define an authorization decision function AuthC

in exactly the same way as we did for AuthT .

4.4 The RBACA Model

The appropriateness- and role-based access control (or RBACA) model augments
the standard RBAC96 model with two functions γ : P ×R → (0, 1] and λ : P →
M , where γ(p, r) denotes the degree of appropriateness with which p is assigned
to r, and λ(p) denotes the risk mitigation strategy associated with p’s usage.
Similarly, for all (p, r) ∈ PA, we require γ(p, r) 6= 0.

Like RBACC , RBACA introduces a similar approach to computing the risk
of granting requests, although the notion of appropriateness is defined on the
permission-role assignments. Given (u, p), we write ∗p to denote the set of roles
to which p is explicitly assigned. We write ∗p ∩ ↓u for the set of roles in ∗p for
which u is authorized. In other words, ∗p∩↓u is the set of roles that are explicitly
authorized for p and that lie on an au-path between u and p.

Given p ∈ P , p might be explicitly assigned to multiple roles, and each of
these assignments is associated with a certain degree of appropriateness. A user
u can use p by activating the most appropriate role to which p is assigned,
and certainly this role is the one that is considered when evaluating the risk of
granting the access request. Hence, we define the risk function riskA : U × P →
[0, 1] to be

riskA(u, p) =







1 if ∗p ∩ ↓u = ∅,

1−max{γ(p, r) : r ∈ ∗p ∩ ↓u} otherwise.

Take an example of an RBACA state in Fig. 1(b). We can see that u2 is able
to perform p1 through r1 or r2. However, the role r1 is the most appropriate



one to which p1 is assigned, therefore, the γ value of 1
2
could be taken, and

riskA(u2, p1) =
1
2
.

Given an RBACA state (V,E, γ, λ), an access request (u, p) and a risk miti-
gation strategy λ(p) for p, the authorization decision function AuthA is defined
in the same way as before.

5 A Risk-Aware RBAC Model

A risk-aware RBAC model may combine the features of two or more of the
RBACT , RBACC and RBACA models. For the sake of completeness, we consider
the risk-aware RBAC (or R2BAC) model that supports all the features of the
RBACT , RBACC and RBACA models. In other words, we now work with the
directed, labeled graph G = (V,E, α, β, γ, λ).

As in RBACC and RBACA, to compute the risk of granting a request (u, p)
in G, we firstly need to decide how to compute the risk associated with an au-
path from u to p based on (α, β, and γ). Unlike our simpler models, we must
then decide how to combine the risk of all au-paths between u and p into an
appropriate risk value. We believe that there are at least two approaches to
computing the risk associated with an au-path from u to p.

Given an au-path u, r, . . . , r′, p, one possibility is to define the risk associated
with this path to be

1−min{α(u), β(u, r), γ(r′, p)}.

In other words, the risk of the au-path u, r, . . . , r′, p is determined by the mini-
mum value in the set comprising u’s trustworthiness, the degree of competence
for u to perform r, and the degree of appropriateness for p to be assigned to
r′. Intuitively, an untrustworthy user still has a high likelihood of misusing her
granted permission, even if she can invoke the permission through a role for which
she is entirely competent and for which the permission is entirely appropriate.
Similarly, a trustworthy user still has a high likelihood of misusing a permission
if she can only perform the permission through a role for which she has little
competence or for which the role is rather inappropriate for the permission.

An alternative way of computing the risk associated with a path is to compute

min{1, (1− α(u)) + (1− β(u, r)) + (1− γ(r′, p))}.

This computation acknowledges that there are risks associated with each part
of the path and accumulates those risks.

Of course, it may be appropriate to compute the risk associated with a path
as a more complex function of α(u), β(u, r) and γ(r′, p). We defer the exploration
of this matter, which would require substantial experimental validation, to future
work. The purpose of this paper is to provide a risk-aware RBAC model that
will provide a robust framework for the investigation of these issues.

We now consider how to combine the risks associated with multiple paths.
Given u, p ∈ V , let Π(u, p) denote the set of au-paths between u and p, and



t

p1

t

p2

tr4tr3 tr5

t
u

tr1 tr2

1

2

1

3

1

2
1

1







�

J
J
Ĵ

J
J
Ĵ







�







�

J
J
Ĵ

�
�
�
�
�
�

Z
Z
Z
Z~ ?

(a) Hierarchical R2BAC state

tr1 tr2 tr3 tr4 tr5

t
u

t

p1

t

p2

1

2 1
1

1

3

1

2

�
�

�
�	

�
�

�
�� ?

A
A
A
AU

@
@
@
@R

A
A
A
AU?

@
@
@
@R

�
�

�
��

�
�

�
��

1

2

1 1

2
1

1

(b) Equivalent flat R2BAC state

Fig. 2. A graphical representation of R2BAC states

for each π ∈ Π(u, p), let risk (π) denote the risk associated with au-path π. We
define risk : U × P → [0, 1], where

risk (u, p) =







1 if Π(u, p) = ∅,

min{risk(π) : π ∈ Π(u, p)} otherwise.

Note that, as in RBACC and RBACA, the way of computing the risk of
allowing u to perform p in R2BAC is to choose the minimum value from the risk
of all au-paths between u and p.

Consider the directed graph of an R2BAC configuration shown in Fig. 2(a),
where β and γ values are indicated by labels attached to edges, and assume that
α(u) = 1. There exist two au-paths from u to p1, that is u → r1 → r3 → p1
and u → r2 → p1. If we use the first approach to compute the risk of those
two au-paths, then risk(u, r1, r3, p1) = 1 − 1

2
= 1

2
, and risk(u, r2, p1) = 1 − 1

3
=

2
3
. Therefore, the risk of granting u to perform p1 is determined by the risk

associated with the au-path u → r1 → r3 → p1, that is, risk(u, p1) = 1
2
. If

we use the second approach to compute the risk of those two au-paths, then
risk (u, r1, r3, p1) = 1, and risk (u, r2, p1) =

2
3
. Hence the risk of granting (u, p1)

is 2
3
, which is determined by the risk associated with the au-path u → r2 → p1.
Given an R2BAC state G = (V,E, α, β, γ, λ), an access request (u, p) and a

risk mitigation strategy λ(p) for p, an authorization decision function Auth is
defined as before.

5.1 On the Advantages of Flat Risk-Aware RBAC

Given an R2BAC state G = (V,E, α, β, γ, λ) and a request (u, p), we could use
a breadth-first search algorithm to find all au-paths between u and p, and then
apply the risk function risk(u, p) on all auth-paths to obtain a risk value. In many
applications, we require a rapid response from the access decision function. In



a risk-aware, hierarchical RBAC system with many users and permissions, this
decision function, which depends on the computation of risk for multiple paths,
may have unacceptably high overheads.

Based on this observation we discuss one way in which these performance
issues might be addressed. In particular, we transform a hierarchical R2BAC
state into an equivalent flat R2BAC state G′ = (V,E′, α, β′, γ′, λ) (in the sense
that the risk of each request remains the same and, therefore, the authorization
decision function returns the same decision) using the following procedure.

1. For all u ∈ U and for all r ∈ ↓u ∩R, we define (u, r) ∈ UA′;
2. For all p ∈ P and for all r ∈ ↑p ∩R, we define (p, r) ∈ PA′;
3. For all (u, r) ∈ UA′, define β′(u, r) = max{β(u, r′) : (u, r′) ∈ UA, r′ > r};
4. For all (p, r) ∈ PA′, define γ′(p, r) = max{γ(p, r′) : (p, r′) ∈ PA, r′ 6 r};
5. Define E′ = UA′ ∪ PA′.

In the first two steps, we make explicit the user- and permission-role assign-
ments that were previously implied by the role hierarchy. In the next four steps
we ensure that each user- and permission-role assignment is associated with an
appropriate β or γ value.

We now show how the transformation works by taking the example of the
R2BAC state illustrated in Fig. 2(a). The first two steps remove the need for
the role hierarchy by explicitly assigning u to roles r3, r4 and r5, the permission
p1 to roles r1 and r2 and p2 to r2. Then β′(u, r4) takes the maximum of the
two values 1 and 1

2
, so β′(u, r4) = 1 using Step 3. Similarly, Step 4 allows us to

compute γ values for p1 and p2. Finally, we output the flat R2BAC state shown
in Fig. 2(b).

Having “flattened” our hierarchical RBAC state, all au-paths have length 2.
We can then use our chosen method for computing the risk associated with an
au-path to compute the risk associated with a request, as before. We can now
use this risk value as part of the input to our risk-aware authorization decision
function.

Of course, the likely reduction in time taken to decide access requests is offset
by the fact that greater storage is required for the RBAC relations. Perhaps more
important, however, is the increased difficulty in ensuring consistent updates
to the RBAC state: one of the great virtues of hierarchical RBAC is that it
simplifies the management of user- and permission-role assignments, since many
such assignments are implied by the role hierarchy. It is likely that different
trade-offs will be tolerated for different applications and different contexts. An
investigation of these trade-offs would be an interesting subject for future work.

5.2 On Sessions in Risk-Aware RBAC

The RBAC96 model introduces the notion of sessions to achieve the principle of
least privilege [21] in RBAC systems. Until this point we have ignored sessions,
which are an important part of the RBAC96 model.

A user may create one or more sessions: in each session the user only activates
a set of roles that are required to accomplish her task. Conceptually, a session is



associated with a user and is a subset of the roles for which a user is authorized.
A request (u, p) is authorized if there exists a session s associated with u and a
role r in s such that there is an au-path from r to p.

In terms of our graph-based formalism, we may introduce a new graph
GDyn = (VDyn, EDyn) to represent the run-time state. This graph is derived
from the RBAC96 graph in the following way. Writing S to denote the set of
sessions, VDyn = S ∪ R ∪ P and (s, r) ∈ EDyn if role r has been activated in
session s. A request is now modeled as a pair (s, p),3 where s is a session, and is
authorized only if there exists an au-path from s to p.

We can very easily extend the above approach to our risk-aware formalism.
Specifically, risk is calculated over paths in GDyn, rather than G. In other words,
the risk computation now applies to a session, rather than a user, so the end-
user may find different mitigations being applied, depending on the session she
chooses to activate.

6 Related Work

There has been significant research on risk-aware access control for enabling the
secure sharing of information within or across multiple organizations [7, 13, 15,
17, 23]. However, most of these works attempt to achieve the goal by proposing
approaches based on risk estimation and economic mechanisms [7, 13, 15, 17, 23].
On the other hand, there are only a few papers on extending RBAC models
with risk semantics [2, 5, 10, 18]. Unlike our models, none of them is concerned
with the authorization semantics of risk-aware RBAC models. In this section, we
review some work that are most related to ours, and illustrate the importance
of our risk-aware RBAC models.

Cheng et al [7] recently introduced a Fuzzy MLS system that controls the
user’s read access to information. The risk of granting a user to read a data
object is estimated based on the security label of the object and the degree of the
trustworthiness of the user. A number of explicit formulae is provided to compute
the trustworthiness of the user based on the security clearance and category
set of the user. On the other hand, Srivatsa et al [23] proposed a trust and
key management paradigm for securing information flows across organizations,
where the trustworthiness of a user is computed using a dynamic trust metric
that depends on user’s behavior. We believe that these approaches to computing
trustworthiness of users can be used to specify the α function in our risk-aware
RBAC models.

In addition, Cheng et al [7] suggested a global approach to risk management
in the Fuzzy MLS model. They define a “hard” boundary, above which all ac-
cesses are denied, and a “soft” boundary, below which all accesses are allowed.
Between the hard and the soft boundaries, an access request is allowed only if a
risk mitigation mechanism can be applied to the access. In our work, we apply
similar techniques to RBAC. However, we adopt a more sophisticated treatment
of risk mitigation.

3 A session is analogous to a subject in models based on a protection matrix.



There has also been some work on incorporating risk semantics in the RBAC
model. Nissanke and Khayat [18] assumed the existence of a partially ordered
set of risk levels, and assigned these risk levels to permissions in an RBAC sys-
tem. Therefore, the usage of one permission might be more risky than the other
according to the risk levels to which these permissions are assigned. They also
suggested an approach to reorganize the role hierarchy using risk analysis of per-
missions. In contrast to their work, we are concerned with how much risk will be
incurred by allowing users to perform permissions, and provide explicit methods
of computing such risk. Dimmock et al [10] extended the OASIS RBAC model [3]
to make decisions on the basis of trustworthiness of users and cost of actions for
certain outcomes. Unlike our models, the extended OASIS model returns binary
decisions: a user’s request to take an action with certain outcome is denied if
the trustworthiness of the user is too low for the outcome’s cost, and allowed
otherwise. Furthermore, Aziz et al [2] introduced a refined RBAC model with
the consideration of risk associated with operational semantics of permissions,
collective usage of permissions, and conflicts of interest respectively. Celiker et

al [5] introduced a probabilistic risk management framework to measure and
evaluate users’ risk in an RBAC system. Unlike our models, neither of these
approaches support a risk-aware evaluation mechanism that is able to return
richer types of access control decisions.

In summary, although all above work attempted to study risk in the context
of RBAC, none of them has considered the possible ways of quantifying risk in
the components of the RBAC model, and examined the way of extending the
access control decision function in RBAC to become risk-aware.

7 Concluding Remarks

In this paper we have examined a number of possible ways to define risk in
different components of the RBAC model. In particular, we observed that the
risk of granting a request in the RBAC model could be rephrased in terms of
user trustworthiness, the degree of competence of a user-role assignment, or the
degree of appropriateness of a permission-role assignment. We assume that there
exist appropriate software components that are able to evaluate these factors,
and dynamically adjust the degree of these factors when context is changed.

Moreover, we developed three simple risk-aware RBAC models that consider
those three quantitative factors respectively. We used a graph-based formalism of
RBAC96 as a basis for defining the semantics of these models, and suggested the
association of risk mitigation strategies with permissions. The resulting models
have clear authorization semantics and accommodate the awareness of risk in
deciding access requests.

Finally, we proposed a full risk-aware RBAC model that combines all the
features of three simple models, and considered some of the practical issues that
might arise when implementing such a model. To our knowledge, this is the first
model that defines quantitative factors on various components of the RBAC



model, and studies the way of combining these factors in order to acquire an
appropriate method of computing the risk of allowing access.

There are two interesting directions for future work. A first priority is to de-
velop context- and risk-aware RBAC models. In particular, we would like to de-
fine a matrix of risk mitigation strategies to be associated with each permission,
where each row represents a different context. The context could be as simple
as emergency or non-emergency situations (as used in break-glass policies [4])
or we could monitor whether there are alternative more senior users available to
invoke the permission (as used in the auto-delegation mechanism [9]).

We also would like to extend our models to include user obligations [12], and
use the idea of “charging for risk” to enforce those obligations. The risk charge is
removed from the user’s “risk account” if the user fulfils the obligation. However,
if the obligation is not fulfilled, the risk charge increases the risk associated with
any subsequent requests made by the user. A user who is unable or unwilling to
fulfil her obligations will eventually be denied all access requests. In other words,
the honest user has an incentive to fulfil her obligations.

We would also like to extend our model to include usage control [20]. Of
particular interest would be the way in which obligations might be used as a
feedback mechanism to modify risk mitigation strategies themselves. In this way,
risk-awareness and risk mitigation might become responsive to previous access
requests and system activity.

Acknowledgements. We would like to thank the anonymous reviewers for
their helpful feedback.

This research was sponsored by US Army Research laboratory and the UK
Ministry of Defence and was accomplished under Agreement Number W911NF-
06-3-0001. The views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the official policies,
either expressed or implied, of the US Army Research Laboratory, the U.S. Gov-
ernment, the UK Ministry of Defense, or the UK Government. The US and UK
Governments are authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation hereon.

References

1. American National Standards Institute: American National Standard for Informa-
tion Technology – Role Based Access Control (2004), ANSI INCITS 359-2004

2. Aziz, B., Foley, S.N., Herbert, J., Swart, G.: Reconfiguring role based access control
policies using risk semantics. Journal of High Speed Networks 15(3), 261–273 (2006)

3. Bacon, J., Moody, K., Yao, W.: A model of OASIS role-based access control and its
support for active security. ACM Transactions on Information and System Security
5(4), 492–540 (2002)

4. Brucker, A.D., Petritsch, H.: Extending access control models with break-glass. In:
Proceedings of the 14th ACM Symposium on Access Control Models and Tech-
nologies. pp. 197–206 (2009)



5. Celikel, E., Kantarcioglu, M., Thuraisingham, B.M., Bertino, E.: A risk manage-
ment approach to RBAC. Risk and Decision Analysis 1(1), 21–33 (2009)

6. Chen, L., Crampton, J.: On spatio-temporal constraints and inheritance in role-
based access control. In: Proceedings of the 2008 ACM Symposium on Information,
Computer and Communications Security. pp. 356–369 (2008)

7. Cheng, P.C., Rohatgi, P., Keser, C., Karger, P.A., Wagner, G.M., Reninger, A.S.:
Fuzzy multi-level security: An experiment on quantified risk-adaptive access con-
trol. In: Proceedings of the 2007 IEEE Symposium on Security and Privacy. pp.
222–230 (2007)

8. Crampton, J., Huth, M.: Detecting and countering insider threats: Can policy-
based access control help? In: Proceedings of the 5th International Workshop on
Security and Trust Management (2009)

9. Crampton, J., Morisset, C.: An auto-delegation mechanism for access control sys-
tems. In: Proceedings of the 6th International Workshop on Security and Trust
Management. pp. 1–16 (2010)

10. Dimmock, N., Belokosztolszki, A., Eyers, D.M., Bacon, J., Moody, K.: Using trust
and risk in role-based access control policies. In: Proceedings of the 9th ACM
Symposium on Access Control Models and Technologies. pp. 156–162 (2004)

11. Ferraiolo, D.F., Kuhn, D.R.: Role-based access controls. In: Proceedings of the
15th National Computer Security Conference. pp. 554–563 (1992)

12. Irwin, K., Yu, T., Winsborough, W.H.: On the modeling and analysis of obligations.
In: Proceedings of the 13th ACM Conference on Computer and Communications
Security. pp. 134–143 (2006)

13. JASON Program Office: Horizontal integration: Broader access models for realizing
information dominance. Technical Report JSR-04-132, MITRE Corporation (2004)

14. Landoll, D.J.: The Security Risk Assessment Handbook: A Complete Guide for
Peforming Security Risk Assessments. CRC Press (2005)

15. Molloy, I., Cheng, P.C., Rohatgi, P.: Trading in risk: Using markets to improve
access control. In: Proceedings of the 2008 Workshop on New Security Paradigms.
pp. 107–125 (2008)

16. National Institute of Standards and Technology: Risk Management Guide for In-
formation Technology Systems (2002), NIST Special Publication 800-30

17. Ni, Q., Bertino, E., Lobo, J.: Risk-based access control systems built on fuzzy
inferences. In: Proceedings of the 5th ACM Symposium on Information, Computer
and Communications Security. pp. 250–260 (2010)

18. Nissanke, N., Khayat, E.J.: Risk based security analysis of permissions in RBAC.
In: Proceedings of the 2nd International Workshop on Security in Information
Systems. pp. 332–341 (2004)

19. OASIS: eXtensible Access Control Markup Language (XACML) Version 2.0 (1
February 2005), OASIS Standard (T. Moses, editor)

20. Park, J., Sandhu, R.S.: The UCONABC usage control model. ACM Transactions
on Information and System Security 7(1), 128–174 (2004)

21. Saltzer, J.H., Schroeder, M.D.: The protection of information in computer systems.
Proceeding of the IEEE 63(9), 1278–1308 (1975)

22. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. IEEE Computer 29(2), 38–47 (1996)

23. Srivatsa, M., Balfe, S., Paterson, K.G., Rohatgi, P.: Trust management for secure
information flows. In: Proceedings of the 15th ACM Conference on Computer and
Communications Security. pp. 175–188 (2008)


