Best Practices in Enterprise Authorization:
The RBAC/ABAC
Hybrid Approach

Table of Contents

Introduction to RBAC and ABAC ...t
RBAC VEISUS ABAC
BenefitsS Of RBAC ... i e e e e e eanaa s
Weaknesses Of RBAC ...
BenefitsS Of ABAC ...
Weaknesses Of ABAC ...
Hybrid RBAC and ABAC AppProaches.......ccccccoviiiiiiiiiiiiiiiieeee
ALITTDUTE CRNTIIC ..o
Y L= O =T o 1 T o
DYNAMIC ROIES ... e e
EmpowerID Combined RBAC/ABAC Model........ccoovvviiiiiiiiiiiiiiiiiiiiiiiiiiinnn,

Introduction to RBAC and ABAC

The modern IT organization is a complex mesh of internally managed and externally hosted
applications. A central concern that this situation creates is how best to secure access and control
authorization for these applications. A long standing debate in the IT community has been whether
Role-Based Access Control (RBAC)—granting access to roles—or Attribute-Based Access Control
(ABAC)—granting access via attribute-based rules—is a better model for authorization
management. The one thing that everyone can agree on is that, whatever the model, authorization
logic should be created and maintained external to the application and not managed uniquely
within each application.

In this white paper we discuss the RBAC versus ABAC models for authorization, lay out the
benefits and weaknesses of each approach and offer a hybrid model that retains the benefits of
each while avoiding their major weaknesses.

Role-Based Access Control or “RBAC” is a security and authorization model for securing access to
computer resources. RBAC is used so widely that almost all large enterprises use RBAC to
secure their systems. Sometimes referred to as “Role-based Security,” RBAC access is based on
roles as defined by the enterprise using them. In the RBAC model, roles are defined and
permission sets for resources are assigned to roles. Users are then granted one or more roles in
order to receive access to resources.

User
[L ||g

Figure 1. Role-Based access to permissions for resources

Resource

| HIp Reader

l) Editor

Admmlstrator

ABAC, on the other hand, stands for Attribute-Based Access Control. As suggested by the name,
ABAC access control relies on user attributes for access decisions. ABAC policies are rules that
evaluate access based upon three sets of attributes. These include: Subject Attributes, which are
attributes concerning the person or actor being evaluated; Resource Attributes, which are
attributes of the target or object being affected; and, Environment Attributes, which include
attributes such as the time of the day, IP subnet, and others that do not relate to either the Subject
or the Resource.

Resource

Figure 2. Simple logical view of attribute-based access to permissions for resources

—
Resource

Policy 1 = 4o gl O.=4 pojicy 2
* | *Rule 1
* Rule 2

* Rule 2

Resource [@@ N[> Editor

Figure 3. More descriptive funnel-view of how ABAC functions

RBAC Versus ABAC

Generally speaking, RBAC and ABAC each have their own weaknesses and benefits. RBAC
trades-off the initial effort of structuring roles for advantages in administration and user permission
whereas ABAC reverses those, providing for easier set-up and structuring, but complicating the
ease of user permissions review associated with RBAC.

Benefits of RBAC

In the RBAC model, the assumption is that controlling and maintaining access is easier since
access is not directly assigned to users but bundled into assignments made to roles. These roles
decrease the cost of security management and compliance auditing as they centralize access
management into fewer assignments to be managed and audited. In an RBAC model, it is clear
who is assigned to a role and what access the role grants. Furthermore, according to a 2010 NIST
study, RBAC implementation delivers significant ROl to companies through efficient provisioning
and reduced employee downtime

RBAC Primary Benefits:

1. RBAC is deterministic. An RBAC approach makes it easy to know who has access to what
at any moment in time.

2. RBAC is more direct and easier to visualize. Security admins are able to visualize the
actors and resources that they will affect when creating or modifying a policy.

3. RBAC is inherently auditable. With RBAC assignments it is simple for business owners to
certify or attest to access granted as the consequences of that access can be viewed. This
contrasts with ABAC where the consequences of a rule are not easy to fully grasp.

4. RBAC can be simpler than ABAC. For example, with RBAC bundles of access can be
directly assigned to a user. To do this in ABAC requires the creation of a new rule.

Weaknesses of RBAC

The concrete nature of the RBAC model can also be considered the source of its weaknesses as it
is more static than ABAC and doesn’t consider contextual information when making an access
decision. In order to capture context for access decisions, more roles must be created and a
larger amount of data analyzed and preprocessed. For example, if access permissions are
differentiated by time of day some users will only have access during normal business hours
whereas other users will have access 24/7. Permissions differentiated in this manner could lead to
the creation of two different roles: One for normal business hours and one for all-hours access. If
other context-related conditions (e.g. authentication strength, remote login, line encryption) were
added it could result in the creation of an excessive number of roles (a “role explosion.”)

RBAC Primary Weaknesses
1. RBAC typically requires advance knowledge of the Subjects and Resources and typically

does not support making on-the-fly contextual decisions.

2. An RBAC-only approach can result in an extremely large number of roles in order to
accomplish fine-grained authorization.

3. Resource Owners must know something about the roles and their intended purpose in order
to accurately grant access to those roles.

4. In order to delegate rights against collections of resources, the resources must be organized
into collections that facilitate delegation.

5. Given a very large number of roles and collections of resources, a correspondingly large
number of delegations would have to be created and managed.

http://csrc.nist.gov/groups/SNS/rbac/documents/20101219_RBAC2_Fina
http://csrc.nist.gov/groups/SNS/rbac/documents/20101219_RBAC2_Fina

Benefits of ABAC

The benefits of ABAC are many and there are some requirements only achievable in an ABAC
model. The most significant benefit is ABAC’s user-intuitive nature which allows for an easy
understanding of how a rule would grant access to a resource. RBAC seems foreign to many
users and the levels of abstraction can be difficult for an IT team, especially during the early phase
of its adoption. Other key benefits of ABAC include flexibility - almost anything can be represented
as a rule-based query as long as the necessary data is available. A rule evaluated at runtime in a
login session can make use of contextual information, even information passed in via SAML
claims. In contrast, a stateless RBAC engine would not have access to this information when
performing background pre-compilation of who has access to what.

ABAC Primary Benefits

1. ABAC makes it easy to specify access rules as simple queries.

2. ABAC rules can be extremely fine-grained and contextual.

3. ABAC rules can evaluate attributes of Subjects and Resources that are not inventoried by
the authorization system.

4. ABAC rules need less maintenance and overhead because they don’t require the creation
or maintenance of the structure on which an RBAC model depends (e.g. roles and
resource locations.)

Weaknesses of ABAC

One of the major challenges with ABAC is that the just-in-time evaluations of its rules result in a
disconnect or lack of an auditable link between the rule-based policies and the resources (aka
assets) that they protect. A simple example using a rule that grants access to an application
based on attribute values and group membership highlights some of the weaknesses of ABAC. In
this example, the rule allows all members of “Group C” where the user’s Job Title in the HR
system contains “sales” and their employee safety training status in the corporate training system
is “Authorized” to access the application.

While this example illustrates the extensive flexibility of an ABAC-based approach in which rules
can be created with almost any syntax desired and without all of the complex relationships that
would be used in a similar RBAC assignment, the evaluation of the aforementioned rule, however,
may not perform acceptably in real-time and may exceed a desirable time period. The challenge
lies in how the application being protected is completely disconnected from the rule and from the
conditions within the rule that specify group membership and attribute values. There is also a
disconnect between the group used in the rule and the application to which it grants access—as
the following shows.

Common audit questions arising from this scenario that would be extremely
difficult to answer, if at all:

1. As an application owner, how would | see which users have access to my application and
how they were granted this access? Do application owners need to be trained on how to
read and interpret the rules as well as on how to research all the source information? How
would the application owner determine who matches the rule, given that the source of the
attribute values could come from another system or be contextual to a single login session?
How would the application owner grant direct access to a user for the application in an

ABAC model?

As a delegated admin that can add or remove users from Group C, how would | know that
adding users is granting them access to Application A? There is not a relationship between
the group and the access it grants as there would be in an RBAC model.

As an auditor, how would | audit how access is granted to application and who is granting
the access? Was it the person that added the user to Group C that granted the access to
Application A or was it the training staff member that changed the user’s status to
“Authorized”? Who is accountable?

What security weight should be associated with the Job Title and training status fields on a
user? From how many sources could this information be edited and by whom? Potentially a
large number of people could be unintentionally performing “Entitlement Management” on a
day to day basis.

In this scenario, how does an auditor monitor the transitions when users are granted and
revoked access to sensitive applications dynamically? No log would be track persons who
had access on a Monday versus a Friday because access would only be evaluated at
runtime.

ABAC Primary Weaknesses

1.

ABAC makes it extremely difficult, if not impossible, to determine permissions available to a
particular user. Potentially, an extremely large number of rules might need to be executed,
and in exactly the same order in which the system applies them, to successfully determine
access. As aresult, it could be impossible to determine risk exposure for any given
employee position.

ABAC can lead to a “Rule Explosion” (somewhat in the same way as RBAC can create a
“Role Explosion) as a system with N number of attributes would have 2N possible rule
combinations.

ABAC systems (which don’t pre-calculate the net result of access rights) can be slow to
answer authorization queries as well as limited in the sophistication of the rules resulting
from ABAC’s difficultly in accessing data from multiple source systems as needed and in an
allotted time period.

Hybrid RBAC and ABAC Approaches

RBAC and ABAC are clearly two ways of approaching authorization problems and while both have
overlapping qualities, each one individually cannot cover all the necessary aspects of access
control.

For optimal, dynamic support of an IT organization’s needs, systems supporting both RBAC and
ABAC, such as EmpowerlD, are necessary. The debate over which is the better access control
system is not-applicable to EmpowerlD’s Identity Management system because EmpowerlD
incorporates both role-based and attribute-based controls.

Types of RBAC/ABAC Hybrid Models and their strengths and weaknesses:

Attribute Centric

In an Attribute-Centric hybrid model, Roles are treated as just another attribute and permission
sets are assigned to attribute-based policies. In contrast with conventional RBAC, a role isn’t a
collection of permissions but rather another attribute named “role.” The main drawback to the
Attribute-Centric model is the loss of RBAC’s administrative ease when determining risk exposure
for any employee position due to the lack of the relationship between the role and the access it
grants when treated as another attribute.

Role Centric

In a Role-Centric hybrid model, permission sets are assigned to Roles and attribute-based policies
are added to constrain RBAC. Constraint rules incorporating attributes can only reduce the
permissions available users and not expand those permissions. Additionally, some of ABAC’s
flexible qualities are lost due to the fact that permission sets are still constrained by Role. The
system, however, retains RBAC’s qualities for determining the maximum set of permissions that
are user-attainable.

Dynamic Roles

In a Dynamic-Roles model, permission sets are assigned to Roles just as they are in the Role
Centric hybrid model. The Roles themselves however are assigned to users dynamically by
attribute-based policies. This model supports the use of complex attribute-based permissions
assignments, which automatically assign users to roles.

Resource

} Reader
) Editor

p Administrator

Figure 4. Dynamic roles where attribute-based policies automate role assignment

EmpowerlD Combined RBAC/ABAC Model

EmpowerID optimizes RBAC-based authorization by leveraging the “Role-Centric” and “Dynamic
Roles” approaches. EmpowerID is Role-Centric in its use of RBAC obijects like roles for the bulk
of its permissions assignments. Access granted to users based on their roles are still constrained
and pared down at runtime in workflow processes by leveraging flexible rules that evaluate
contextual information. This mix of RBAC and ABAC allows a structured approach to control who
may do what with the additional ability to leverage adaptive or contextual security principles.

EmpowerID makes heavy use of Dynamic Roles to automate getting users into and out of roles
based on information changes in key authoritative enterprise systems. Users can be automatically
assigned to roles by falling into query-based collections known in EmpowerlD as SetGroups.
SetGroups are LDAP or code-based query collections of users and resources. SetGroups can
leverage information from any reachable enterprise system to create and maintain these dynamic
collections. By using SetGroups to control role membership, IT workload is dramatically reduced
giving the benefits of an ABAC query-only model while maintaining RBAC’s ability to audit and
review how access is being granted. SetGroups themselves are also RBAC actors in the
EmpowerID model and can be directly assigned permissions as a type of dynamic role.
SetGroups also automate the resource side of RBAC by creating dynamic attribute-based
collections of resources to receive delegations. These collections of resources can use any
metadata available for the resource allowing collections of secured resources to be grouped by
security tagging or other information.

User
Access

O Resource

p Administrator

Dynamic RBAC . s ABAC

Figure 5. The EmpowerlD hybrid RBAC and ABAC access control model

10

EmpowerID also supports true fine-grained ABAC in its SAML and WS-Trust Federation
extensions. These are programmable extensions that can generate claims on the fly based on
information from enterprise systems during the user login process for 3¢ party applications that
leverage claims for security.

An example of EmpowerlD providing ABAC for 3" party applications is its support for the role of
Claims Provider for Microsoft SharePoint. SharePoint 2010 provides a pluggable model allowing
authorization providers to be called during the user login process to add claims to a user’s token.
These EmpowerlD claims are visible and can be used in the People Picker control in SharePoint
to find and select people, groups, and claims when a site, list, or library owner assigns
permissions. The claims for a user are evaluated at runtime during the login process allowing on
the fly contextual authorization decisions to be made. These decisions can be as simple as
leveraging a user’s static assignments to roles and groups or something more complex where rule-
based queries pull information from multiple enterprise systems to calculate access at that
moment.

EmpowerlD’s combined hybrid model retains the advantages of RBAC while integrating the
increased flexibility offered by ABAC approaches.

For more information on the EmpowerID authorization model visit:
http://wiki.thedotnetfactory.com/

THE
DOT
NET

FACTORY

http://www.empowerid.com Phone:(877) 996-4276

11

http://wiki.thedotnetfactory.com/display/EIDAG2011/Understanding+EmpowerID+RBA
http://www.empowerid.com

